English

Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3). - Mathematics and Statistics

Advertisements
Advertisements

Question

Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).

Sum

Solution


A(2, 5), B(6, –1) and C(–4, –3) are the vertices of ΔABC.

∴ Let AD, BE and CF be the altitudes through the vertices A, B and C respectively of ΔABC.

Slope of BC = `(-3 - (- 1))/(-4 - 6)`

= `(-2)/(-10)`

= `1/5`

∴ Slope of AD = –5 ....[∵ AD ⊥ BC]

Since altitude AD passes through the point (2, 5) and has slope –5,

equation of the altitude AD is

y – 5 = –5(x – 2)

∴ y – 5 = –5x + 10

∴ 5x + y – 15 = 0

Now, slope of AC = `(-3 - 5)/(-4 - 2)`

= `(-8)/(-6)`

= `4/3`

∴ Slope of BE = `(-3)/4` .....[∵ BE ⊥ AC]

Since altitude BE passes through (6, – 1) and has a slope `(-3)/4`,

equation of the altitude BE is

y – (– 1) = `(-3)/4(x - 6)`

∴ 4(y + 1) = –3(x – 6)

∴ 4y + 4 = –3x + 18

∴ 3x + 4y – 14 = 0

Also, slope of AB = `(-1 - 5)/(6 - 2)`

= `(-6)/4`

= `(-3)/2`

∴ Slope of CF = `2/3` .....[∵ CF ⊥ AB]

Since altitude CF passes through (– 4, – 3) and has slope `2/3`,

equation of altitude CF is

y – (– 3) = `2/3[x - (- 4)]`

∴ 3(y + 3) = 2(x + 4)

∴ 3y + 9 = 2x + 8

∴ 2x – 3y – 1 = 0

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 115]

RELATED QUESTIONS

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the median AD


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×