Advertisements
Advertisements
Question
Answer the following question:
Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.
Solution
Case I: Line not passing through origin.
Let the equation of the line be `x/"a" + y/"b"` = 1 ...(i)
This line passes through (3, 4)
∴ `3/"a" + 4/"b"` = 1 ...(ii)
Since the sum of the intercepts of the line is zero,
a + b = 0
∴ a = – b ...(iii)
Substituting the value of a in (ii), we get
`3/(-"b") + 4/"b"` = 1
∴ `1/"b"` = 1
∴ b = 1
∴ a = – 1 ...[From (iii)]
Substituting the values of a and b in (i), the equation of the required line is
`x/(-1) + y/1` = 1
∴ x – y = – 1
∴ x – y + 1 = 0
Case II: Line passing through origin.
Slope of line passing through origin and A(3, 4) is
m = `(4 - 0)/(3 - 0) = 4/3`
∴ Equation of the line having slope m and passing through origin (0, 0) is y = mx.
∴ The equation of the required line is
y = `4/3x`
∴ 4x – 3y = 0
∴ There are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.
APPEARS IN
RELATED QUESTIONS
Obtain the equation of the line :
parallel to the Y−axis and making an intercept of 4 unit on the X−axis
Obtain the equation of the line containing the point :
B(4, –3) and parallel to the X-axis
Find the equation of the line passing through the points A(2, 0), and B(3, 4)
Find the equation of the line passing through the points P(2, 1) and Q(2, –1)
Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)
Find the equation of the line containing point A(3, 5) and having slope `2/3`.
Find the equation of the line containing point A(4, 3) and having inclination 120°
Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.
Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.
Find the x and y intercept of the following line:
`(3x)/2 + (2y)/3` = 1
Find the x and y intercept of the following line:
2x − 3y + 12 = 0
Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).
Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).
N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.
Select the correct option from the given alternatives:
The equation of the line through (1, 2), which makes equal intercepts on the axes, is
Select the correct option from the given alternatives:
If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =
Answer the following question:
Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope
Answer the following question:
Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis
Answer the following question:
Find the equation of the line having slope 5 and containing point A(–1, 2).
Answer the following question:
Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.
Answer the following question:
Find the equation of the line passing through the points S(2, 1) and T(2, 3)
Answer the following question:
Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.
Answer the following question:
The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides
Answer the following question:
Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12
Answer the following question:
Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0
Answer the following question:
The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.
If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.
The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______
Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.
Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.