English

Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes. - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.

Sum

Solution

Let the line 3x + y = 6 intersect X-axis at A and Y-axis at B.

∴ for A, y = 0 in 3x + y = 6

∴ 3x = 6

∴ x = 2

∴ A ≡ (2, 0)

For B, x = 0 in 3x + y = 6

∴ 3(0) + y = 6

∴ y = 6

∴ B ≡ (0, 6)

Let P(x, y) bisects the portion of the line between the co-ordinate axes.

∴ P is the midpoint of AB

∴ P ≡ `((2 + 0)/2, (0 + 6)/2)` = (1, 3)

∴ required line is passing through the origin O(0, 0) and P(1, 3)

Now, equation of the line passing through the points (x1, y1) and (x2, y2) is

`(y - y_1)/(x - x_1) = (y_2 - y_1)/(x_2 - x_1)`

∴ equation of the required line passing through (0, 0) and (1, 3) is,

`(y - 0)/(x - 0) = (3 - 0)/(1 - 0)` = 3

∴ y = 3x

∴ 3x – y = 0

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 114]

RELATED QUESTIONS

Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)


Find the equation of the line containing point A(4, 3) and having inclination 120°


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the median AD


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×