English

Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the line passing through the origin and parallel to AB, where A is (2, 4) and B is (1, 7)

Sum

Solution

Slope of AB = `(7 - 4)/(1 - 2) = 3/(-1)` = – 3

Since required line is parallel to AB, slope of the line is – 3 and it is passing through the origin.

∴ equation of the required line is 

y = mx, where m = – 3

∴ y = – 3x.

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 114]

RELATED QUESTIONS

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line containing point A(4, 3) and having inclination 120°


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the equations of perpendicular bisectors of sides of the triangle whose vertices are P(−1, 8), Q(4, −2), and R(−5, −3)


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line passing through the points S(2, 1) and T(2, 3)


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×