English

Find the equation of the line containing point A(4, 3) and having inclination 120° - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the line containing point A(4, 3) and having inclination 120°

Sum

Solution

Given, Inclination of line = θ = 120°

∴ Slope of the line (m) = tan θ

= tan 120°

= tan (90° + 30°)

= – cot 30°

= `-sqrt(3)`

and the line passes through A(4, 3).

Equation of the line in slope point form is

y – y1 = m(x – x1)

∴ The equation of the required line is

y – 3 = `-sqrt(3)("x" - 4)`

∴ y – 3 = `-sqrt(3) "x" + 4sqrt(3)`

∴ `sqrt(3) "x" + "y" - 3 - 4sqrt(3)` = 0

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Exercise 5.3 [Page 114]

RELATED QUESTIONS

Write the equation of the line :

parallel to the X−axis and at a distance of 5 unit form it and above it


Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.


Find the equation of the line having inclination 135° and making X-intercept 7


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the equations of the diagonals of the rectangle whose sides are contained in the lines x = 8, x = 10, y = 11 and y = 12


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


Answer the following question:

Show that there is only one line which passes through B(5, 5) and the sum of whose intercept is zero.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×