English

Answer the following question: Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.

Sum

Solution

Case I: Line not passing through the origin.

Let the equation of the line be `x/"a" + y/"b"` = 1 ...(i)

This line passes through A(3, 5).

∴ `3/"a" + 5/"b"` = 1 ...(ii)

Since the required line makes equal intercepts on the co-ordinates axes,

a = b ...(iii)

Substituting the value of b in (ii), we get

`3/"a" + 5/"a"` = 1

∴ `8/"a"` = 1

∴ a = 8

∴ b = 8 …[From (iii)]

Substituting the values of a and b in equation (i), the equation of the required line is

`x/8 + y/8` = 1

∴ x + y = 8

Case II: Line passing through the origin.

Slope of line passing through origin and

A(3, 5) is m = `(5 - 0)/(3 - 0) = 5/3`

∴ Equation of the line having slope m and passing through the origin (0, 0) is y = mx.

∴ The equation of the required line is

y = `5/3x`

∴ 5x – 3y = 0

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Miscellaneous Exercise 5 [Page 125]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Straight Line
Miscellaneous Exercise 5 | Q II. (12) | Page 125

RELATED QUESTIONS

Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line containing the origin and having inclination 60°


Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of lines containing the point A(3, 4) and making equal intercepts on the co-ordinates axes.


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×