English

Answer the following question: Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope

Sum

Solution

Given equation is 6x + 3y + 8 = 0, which can be written as

3y = – 6x – 8

∴  y = `(-6x)/3 - 8/3`

∴ y = `-2x - 8/3`

This is of the form y = mx + c with m = – 2

∴ y = `-2x - 8/3` is in slope-intercept form with slope = – 2

shaalaa.com
Equations of Line in Different Forms
  Is there an error in this question or solution?
Chapter 5: Straight Line - Miscellaneous Exercise 5 [Page 124]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 5 Straight Line
Miscellaneous Exercise 5 | Q II. (2) | Page 124

RELATED QUESTIONS

Write the equation of the line :

parallel to the Y−axis and at a distance of 5 unit form it and to the left of it


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Obtain the equation of the line :

parallel to the Y−axis and making an intercept of 4 unit on the X−axis


Obtain the equation of the line containing the point :

A(2, – 3) and parallel to the Y−axis


Obtain the equation of the line containing the point :

B(4, –3) and parallel to the X-axis


Find the equation of the line passing through the points A(2, 0), and B(3, 4)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Find the equation of the line having slope 5 and containing point A(–1, 2).


Answer the following question:

Find the equation of the line through the origin which bisects the portion of the line 3x + 2y = 2 intercepted between the co−ordinate axes.


Answer the following question:

Find the equation of the line which contains the point A(3, 5) and makes equal intercepts on the co-ordinates axes.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

Find the equation of the line through A(−2, 3) and perpendicular to the line through S(1, 2) and T(2, 5)


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

Two lines passing through M(2, 3) intersect each other at an angle of 45°. If slope of one line is 2, find the equation of the other line.


Answer the following question:

The vertices of ∆PQR are P(2, 1), Q(−2, 3) and R(4, 5). Find the equation of the median through R.


Answer the following question:

P(a, b) is the mid point of a line segment between axes. Show that the equation of the line is `x/"a" + y/"b"` = 2


Answer the following question:

Show that there are two lines which pass through A(3, 4) and the sum of whose intercepts is zero.


If the equation kxy + 5x + 3y + 2 = 0 represents a pair of lines, then k = ____________.


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


The point A(b, a) lies on the straight line 2x + 3y = 13 and the point B(a, b) lies on the straight line -x + 4y = 5, then the equation of line AB is ______


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


The angle between the lines x sin 60° + y cos 60° = 5 and x sin 30° + y cos 30° = 7 is ______ 


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×