मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following question: Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Reduce the equation 6x + 3y + 8 = 0 into slope-intercept form. Hence find its slope

बेरीज

उत्तर

Given equation is 6x + 3y + 8 = 0, which can be written as

3y = – 6x – 8

∴  y = `(-6x)/3 - 8/3`

∴ y = `-2x - 8/3`

This is of the form y = mx + c with m = – 2

∴ y = `-2x - 8/3` is in slope-intercept form with slope = – 2

shaalaa.com
Equations of Line in Different Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 5 Straight Line
Miscellaneous Exercise 5 | Q II. (2) | पृष्ठ १२४

संबंधित प्रश्‍न

Write the equation of the line :

parallel to the X-axis and at a distance of 4 unit form the point (−2, 3)


Obtain the equation of the line :

parallel to the X−axis and making an intercept of 3 unit on the Y−axis


Find the equation of the line containing the origin and having inclination 60°


Line y = mx + c passes through points A(2, 1) and B(3, 2). Determine m and c.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing side BC.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the midpoints of sides AB and BC


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Select the correct option from the given alternatives:

If the line kx + 4y = 6 passes through the point of intersection of the two lines 2x + 3y = 4 and 3x + 4y = 5, then k =


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the medians.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of Perpendicular bisectors of sides


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0


If (a, −2a), a > 0 is the mid-point of a line segment intercepted between the co-ordinate axes, then the equation of the line is ____________.


The slope of normal to the curve x = `sqrt"t"` and y = `"t" - 1/sqrt"t"`at t = 4 is _____.


The intercept of a line between the coordinate axes is divided by the point (1, 3) in the ratio 3 : 1. The equation of the line will be ______


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


Suppose the line `(x - 2)/α = ("y" - 2)/(-5) = ("z" + 2)/2` lies on the plane x + 3y – 2z + β = 0. Then (α + β) is equal to ______.


Let the perpendiculars from any point on the line 7x + 56y = 0 upon 3x + 4y = 0 and 5x – 12y = 0 be p and p', then ______.


Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 is equal to ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×