हिंदी

Answer the following question. State Kepler’s law of period. - Physics

Advertisements
Advertisements

प्रश्न

Answer the following question.

State Kepler’s law of the period.

टिप्पणी लिखिए

उत्तर

Statement:

The square of the time period of revolution of a planet around the Sun is proportional to the cube of the semimajor axis of the ellipse traced by the planet.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Gravitation - Exercises [पृष्ठ ९७]

APPEARS IN

बालभारती Physics [English] 11 Standard Maharashtra State Board
अध्याय 5 Gravitation
Exercises | Q 2. (ii) | पृष्ठ ९७

संबंधित प्रश्न

A comet orbits the Sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit? Neglect any mass loss of the comet when it comes very close to the Sun.


Let the period of revolution of a planet at a distance R from a star be T. Prove that if it was at a distance of 2R from the star, its period of revolution will be \[\sqrt{8}\] T.


In the Following figure shows the elliptical path of a planet about the sun. The two shaded parts have equal area. If t1 and t2 be the time taken by the planet to go from a to b and from c to d respectively,


Answer the following question.

State Kepler’s law of equal areas.


Observe the given figure showing the orbit of a planet moving around the Sun and write the three laws related to it:


The orbit of a planet moving around the Sun


The orbit of a planet revolving around a star is _______.


The square of its period of revolution around the sun is directly proportional to the _______ of the mean distance of a planet from the sun.


Write the Kepler's laws.


State Kepler’s laws.


If the distance between the sun and the earth is made three times, then attraction between the two will ______


A planet is revolving around the sun in an elliptical orbit as shown in figure. At which point will its K.E. be maximum?


The mass and radius of earth is 'Me' and 'Re' respectively and that of moon is 'Mm' and 'Rm' respectively. The distance between the centre of the earth and that of moon is 'D'. The minimum speed required for a body (mass 'm') to project from a point midway between their centres to escape to infinity is ______.


The earth moves around the sun in an elliptical orbit as shown in the figure. The ratio, `"OA"/"OB"` = x. The ratio of the speed of the earth at Band at A is ______.


To verify Kepler's third law graphically four students plotted graphs. Student A plotted a graph of T (period of revolution of planets) versus r (average distance of planets from the sun) and found the plot is straight line with slope 1.85. Student B plotted a graph of T2 v/s r3 and found the plot is straight line with slope 1.39 and negative Y-intercept. Student C plotted graph of log T v/s log r and found the plot is straight line with slope 1.5. Student D plotted graph of log T v/s log r and found the plot is straight line with slope 0.67 and with negative X-intercept. The correct graph is of student


A planet revolves in an elliptical orbit around the sun. The semi-major and minor axes are a and b, then the time period is given by:


In our solar system, the inter-planetary region has chunks of matter (much smaller in size compared to planets) called asteroids. They ______.


If the sun and the planets carried huge amounts of opposite charges ______.

  1. all three of Kepler’s laws would still be valid.
  2. only the third law will be valid.
  3. the second law will not change.
  4. the first law will still be valid.

The centre of mass of an extended body on the surface of the earth and its centre of gravity ______.

  1. are always at the same point for any size of the body.
  2. are always at the same point only for spherical bodies.
  3. can never be at the same point.
  4. is close to each other for objects, say of sizes less than 100 m.
  5. both can change if the object is taken deep inside the earth.

Draw areal velocity versus time graph for mars.


What is the direction of areal velocity of the earth around the sun?


Earth’s orbit is an ellipse with eccentricity 0.0167. Thus, earth’s distance from the sun and speed as it moves around the sun varies from day to day. This means that the length of the solar day is not constant through the year. Assume that earth’s spin axis is normal to its orbital plane and find out the length of the shortest and the longest day. A day should be taken from noon to noon. Does this explain variation of length of the day during the year?


The maximum and minimum distances of a comet from the Sun are 1.6 × 1012 m and 8.0 × 1010 m respectively. If the speed of the comet at the nearest point is 6 × 104 ms-1, the speed at the farthest point is ______.


A planet revolving in an elliptical orbit has:

  1. a constant velocity of revolution.
  2. has the least velocity when it is nearest to the sun.
  3. its areal velocity is directly proportional to its velocity.
  4. areal velocity is inversely proportional to its velocity.
  5. to follow a trajectory such that the areal velocity is constant.

Choose the correct answer from the options given below:


lf the angular momentum of a planet of mass m, moving around the Sun in a circular orbit is L, about the center of the Sun, and its areal velocity is ______.


Halley's Comet revolves around the sun for a time period of 76 years. The aphelion distance if perihelion is given by 8.9 × 1010 m, will be ______.

(Take, the mass of sun = 2 × 1030 kg and G = 6.67 × 10-11 Nm3/kg2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×