Advertisements
Advertisements
प्रश्न
Answer the following question.
Why is a minimum two-stage rocket necessary for launching of a satellite?
उत्तर
- For the projection of an artificial satellite, it is necessary for the satellite to have a certain velocity.
- In a single stage rocket, when the fuel in the first stage of the rocket is ignited on the surface of the Earth, it raises the satellite vertically.
- The velocity of the projection of the satellite normal to the surface of the Earth is the vertical velocity.
- If this vertical velocity is less than the escape velocity (ve), the satellite returns to the Earth’s surface. While, if the vertical velocity is greater than or equal to the escape velocity, the satellite will escape from Earth’s gravitational influence and go to infinity.
- Hence, a minimum two-stage rocket, one to raise the satellite to the desired height and another to provide the required horizontal velocity, is necessary for launching of a satellite.
APPEARS IN
संबंधित प्रश्न
Suppose there existed a planet that went around the sun twice as fast as the earth.What would be its orbital size as compared to that of the earth?
Is it necessary for the plane of the orbit of a satellite to pass through the centre of the earth?
Consider earth satellites in circular orbits. A geostationary satellite must be at a height of about 36000 km from the earth's surface. Will any satellite moving at this height be a geostationary satellite? Will any satellite moving at this height have a time period of 24 hours?
No part of India is situated on the equator. Is it possible to have a geostationary satellite which always remains over New Delhi?
As the earth rotates about its axis, a person living in his house at the equator goes in a circular orbit of radius equal to the radius of the earth. Why does he/she not feel weightless as a satellite passenger does?
A spacecraft consumes more fuel in going from the earth to the moon than it takes for a return trip. Comment on this statement.
The time period of an earth-satellite in circular orbit is independent of
A satellite is orbiting the earth close to its surface. A particle is to be projected from the satellite to just escape from the earth. The escape speed from the earth is ve. Its speed with respect to the satellite
(a) Find the radius of the circular orbit of a satellite moving with an angular speed equal to the angular speed of earth's rotation. (b) If the satellite is directly above the North Pole at some instant, find the time it takes to come over the equatorial plane. Mass of the earth = 6 × 1024 kg.
What is the true weight of an object in a geostationary satellite that weighed exactly 10.0 N at the north pole?
Find the minimum colatitude which can directly receive a signal from a geostationary satellite.
Answer the following question in detail.
Why an astronaut in an orbiting satellite has a feeling of weightlessness?
Answer the following question in detail.
What is a critical velocity?
Answer the following question in detail.
Two satellites A and B are revolving round a planet. Their periods of revolution are 1 hour and 8 hour respectively. The radius of orbit of satellite B is 4 × 104 km. Find radius of orbit of satellite A.
A planet has mass 6.4 × 1024 kg and radius 3.4 × 106 m. Calculate the energy required to remove an object of mass 800 kg from the surface of the planet to infinity.
Solve the following problem.
What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth?
(Mass of the Earth is 6 × 1024 kg, radius of the Earth = 6400 km and G = 6.67 × 10–11 N m2 kg–2)
The ratio of energy required to raise a satellite of mass 'm' to a height 'h' above the earth's surface of that required to put it into the orbit at same height is ______.
[R = radius of the earth]
Which of the following statements is CORRECT in respect of a geostationary satellite?
Reason of weightlessness in a satellite is ____________.
Two satellites of masses m and 4m orbit the earth in circular orbits of radii 8r and r respectively. The ratio of their orbital speeds is ____________.
If a body weighing 40 kg-wt is taken inside the earth to a depth to `1/2` th radius of the earth, then the weight of the body at that point is ____________.
The ratio of energy required to raise a satellite to a height `(2R)/3` above earth's surface to that required to put it into the orbit at the same height is ______.
R = radius of the earth
A geostationary satellite is orbiting the earth at a height 6R above the surface of the earth, where R is the radius of the earth. This time period of another satellite at a height (2.5 R) from the surface of the earth is ______.
The period of revolution of a satellite is ______.
Show the nature of the following graph for a satellite orbiting the earth.
- KE vs orbital radius R
- PE vs orbital radius R
- TE vs orbital radius R.
A satellite is revolving in a circular orbit at a height 'h' above the surface of the earth of radius 'R'. The speed of the satellite in its orbit is one-fourth the escape velocity from the surface of the earth. The relation between 'h' and 'R' is ______.
The ratio of binding energy of a satellite at rest on earth's surface to the binding energy of a satellite of same mass revolving around the earth at a height h above the earth's surface is ______ (R = radius of the earth).
A satellite revolves around a planet very close to its surface. By what maximum factor can its kinetic energy be increased suddenly, such that it revolves in orbit in the same way?
Two satellites of same mass are orbiting round the earth at heights of r1 and r2 from the centre of earth. Their potential energies are in the ratio of ______.