Advertisements
Advertisements
प्रश्न
अनुक्रम का कौन सा पद:
`sqrt3, 3, 3 sqrt3`, ….; 729 है?
उत्तर
दिया गया अनुक्रम है `sqrt3, 3, 3sqrt3`,...
यहाँ, a = `sqrt3` and r = `3/sqrt3 = 3`
माना कि दिए गए अनुक्रम का nवाँ पद 729 है।
an = arn- 1
∴ arn - 1 = 729
= `(sqrt3)(sqrt3)^("n" - 1)` = 729
= `(3)^(1/2) (3)^((n - 1)/2) = (3)^6`
= `(3)^(1/2 + (n - 1)/2) = (3)^6`
∴ `1/2 + (n - 1)/2 = 6`
= `(1 + n - 1)/2 = 6`
= n = 12
इस प्रकार, दिए गए अनुक्रम का 12वाँ पद 729 है।
APPEARS IN
संबंधित प्रश्न
उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।
अनुक्रम का कौन सा पद:
`2, 2sqrt2, 4, ......; 128` है?
अनुक्रम का कौन सा पद:
`1/3, 1/9, 1/27` ,....., `1/19683` है?
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
0.15, 0.015, 0.0015, ….., 20 पदों तक
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)
एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।
गुणोत्तर श्रेणी 3, 32, 33, …. के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।
किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले तीन पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए।
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।
यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq−r br−p cp−q = 1
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n
यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2
किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।
किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।
यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।
किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn
यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15