हिंदी

यदि abxabxbcxbcxcdxcdxa+bxa-bx=b+cxb-cx=c+dxc-dx (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "dx")/("c" - "dx")` (x ≠ 0) हो, तो दिखाइए कि a, b, c, d गुणोत्तर श्रेणी में है।

योग

उत्तर

हम जानते हैं कि यदि `"a"/"b" = "c"/"d"` तब `("a" + "b")/("a" - "b") = ("c" + "d")/("c" - "d")`

इस नियम अनुसार, यदि `("a" + "bx")/("a" - "bx") = ("b" + "cx")/("b" - "cx") = ("c" + "cx")/("c" - "cx")`

तो, `(("a" + "bx") + ("a" - "bx"))/(("a" + "bx") - ("a" - "bx")) = (("b" + "cx") + ("b" - "cx"))/(("b" + "cx") - ("b" - "cx"))`

= `(("c" + "dx") + ("c" - "dx"))/(("c" + "dx") - ("c" - "dx"))`

`(2"a")/(2"bx") = (2"b")/(2"cx") = (2"c")/(2"dx")`

या `"a"/"b" = "b"/"c" = "c"/"d"`

अतः a, b, c, d गुणोत्तर श्रेणी में है।

shaalaa.com
गुणोत्तर श्रेणी
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अनुक्रम तथा श्रेणी - अध्याय 9 पर विविध प्रश्नावली [पृष्ठ २१३]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 9 अनुक्रम तथा श्रेणी
अध्याय 9 पर विविध प्रश्नावली | Q 13. | पृष्ठ २१३

संबंधित प्रश्न

गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।


उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।


किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.


किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`2, 2sqrt2, 4, ......; 128` है?


x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

1, −a, a2, −a3, ...... n पदों तक (यदि a ≠ –1)


मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`


एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले तीन पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।


एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?


एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq−r br−p cp−q = 1


दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात `1/"r"^"n"` है।


सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।


गुणोत्तर श्रेणी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 तथा 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के तीन पदों का योग 56 है। यदि हम क्रम से इन संख्याओं में से 1, 7, 21 घटाएँ तो हमें एक समांतर श्रेणी प्राप्त होती है। संख्याएँ ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।


यदि x2 – 3x + p = 0 के मूल a तथा b हैं तथा x2 – 12x + q = 0, के मूल c तथा d हैं, जहाँ a, b, c, d गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि (q + p) : (q – p) = 17 : 15


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×