हिंदी

एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए? - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?

योग

उत्तर

First term of the geometric progression, a = 729

Let common ratio = r

∴ 7th term = ar7-1 = ar6

729 r6 = 64

⇒ r6 = `64/729 = (2/3)^6`

∴ r = `2/3`

Now S7 = `("a"(1 - "r"^"n"))/(1 - "r")`

= `(729[1 - (2/3)^7])/(1 - 2/3)`

= `729 xx 3 xx [(2187 - 128)/2187]`

= `(729 xx 3)/2187 (2059)`

= 2059

shaalaa.com
गुणोत्तर श्रेणी
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: अनुक्रम तथा श्रेणी - प्रश्नावली 9.3 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
अध्याय 9 अनुक्रम तथा श्रेणी
प्रश्नावली 9.3 | Q 15. | पृष्ठ २०६

संबंधित प्रश्न

किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।


अनुक्रम का कौन सा पद:

`2, 2sqrt2, 4, ......; 128` है?


अनुक्रम का कौन सा पद:

`sqrt3, 3, 3 sqrt3`, ….; 729 है?


x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

`sqrt7, sqrt21, 3sqrt7, .... n` पदों तक


निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

1, −a, a2, −a3, ...... n पदों तक (यदि a ≠ –1)


मान ज्ञात कीजिए `sum_("k" = 1)^11  (2 + 3^"k")`


एक गुणोत्तर श्रेणी के तीन पदों का योगफल `39/10` है तथा उनका गुणनफल 1 है। सार्व अनुपात तथा पदों को ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी के प्रथम तीन पदों का योगफल 16 है तथा अगले तीन पदों का योग 128 है तो गुणोत्तर श्रेणी का प्रथम पद, सार्व अनुपात तथा n पदों का योगफल ज्ञात कीजिए।


यदि किसी गुणोत्तर श्रेणी का 4वाँ, 10वाँ तथा 16वाँ पद क्रमशः x, y तथा z हैं, तो सिद्ध कीजिए कि x, y, z गुणोत्तर श्रेणी में हैं।


अनुक्रम 8, 88, 888, 8888, …. के n पदों का योग ज्ञात कीजिए।


अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।


दिखाइए कि अनुक्रम a, ar, ar2, … arn – 1 तथा A, AR, AR2, …. ARn – 1 के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए। 


ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।


दिखाइए कि एक गुणोत्तर श्रेणी के प्रथम n पदों के योगफल तथा (n + 1) वें पद से (2n)वें पद तक के पदों के योगफल का अनुपात `1/"r"^"n"` है।


यदि a, b, c तथा d गुणोत्तर श्रेणी में हैं तो दिखाइए कि (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2


ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।


सभी x, y ϵ N के लिए f(x + y) = f(x). f(y) को संतुष्ट करता हुआ f एक ऐसा फलन है कि f(1) = 3 एवं `sum_("x" = 1)^ "n"` f(x) = 120 तो n का मान ज्ञात करो।


गुणोत्तर श्रेणी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 तथा 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी का प्रथम पद 1 है। तीसरे एवं पाँचवें पदों का योग 90 हो तो गुणोत्तर श्रेणी का सार्व अनुपात ज्ञात कीजिए।


किसी गुणोत्तर श्रेणी में S, n पदों का योग, P उनका गुणनफल तथा R उनके व्युत्क्रमों का योग हो तो सिद्ध कीजिए कि P2Rn = Sn


यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।


यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×