Advertisements
Advertisements
प्रश्न
यदि a, b, c, d गुणोत्तर श्रेणी में हैं, तो सिद्ध कीजिए कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।
उत्तर
यह दिया गया है कि a, b, c, और d गुणोत्तर श्रेणी में हैं।
∴b2 = ac … (1)
c2 = bd … (2)
ad = bc … (3)
यह सिद्ध करना होगा कि (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।
(bn + cn)2 = (an + bn) (cn + dn)
बायाँ पक्ष
(bn + cn)2 = b2n + 2bncn + c2n
= (b2)n+ 2bncn + (c2) n
= (ac)n + 2bncn + (bd)n [(1) और (2) का प्रयोग करते हुए]
= an cn + bncn+ bn cn + bn dn
= an cn + bncn+ an dn + bn dn [(3) का उपयोग करते हुए]
= cn (an + bn) + dn (an + bn)
= (an + bn) (cn + dn)
= दायाँ पक्ष
∴ (bn + cn)2 = (an + bn) (cn + dn)
अतः (an + bn), (bn + cn), (cn + dn) गुणोत्तर श्रेणी में हैं।
APPEARS IN
संबंधित प्रश्न
गुणोत्तर श्रेणी `5/2, 5/4, 5/8, ......` का 20वाँ तथा nवाँ पद ज्ञात कीजिए।
उस गुणोत्तर श्रेणी का 12वाँ पद ज्ञात कीजिए, जिसका 8वाँ पद 192 तथा सार्व अनुपात 2 है।
किसी गुणोत्तर श्रेणी का 5वाँ, 8वाँ तथा 11वाँ पद क्रमशः p, q तथा s हैं तो दिखाइए कि q2 = ps.
किसी गुणोत्तर श्रेणी का चौथा पद उसके दूसरे पद का वर्ग है तथा प्रथम पद –3 है तो 7वाँ पद ज्ञात कीजिए।
अनुक्रम का कौन सा पद:
`2, 2sqrt2, 4, ......; 128` है?
अनुक्रम का कौन सा पद:
`sqrt3, 3, 3 sqrt3`, ….; 729 है?
अनुक्रम का कौन सा पद:
`1/3, 1/9, 1/27` ,....., `1/19683` है?
x के किस मान के लिए संख्याएँ `-2/7, "x", (-7)/2` गुणोत्तर श्रेणी में हैं?
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
0.15, 0.015, 0.0015, ….., 20 पदों तक
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
1, −a, a2, −a3, ...... n पदों तक (यदि a ≠ –1)
निम्नलिखित गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
x3, x5, x7, ….. n पदों तक (यदि x ≠ ± 1)
गुणोत्तर श्रेणी 3, 32, 33, …. के कितने पद आवश्यक हैं ताकि उनका योगफल 120 हो जाए।
एक गुणोत्तर श्रेणी का प्रथम पद a = 729 तथा 7वाँ पद 64 है तो S7 ज्ञात कीजिए?
एक गुणोत्तर श्रेणी को ज्ञात कीजिए, जिसके प्रथम दो पदों का योगफल –4 है तथा 5वाँ पद तृतीय पद का 4 गुना है।
अनुक्रम 2, 4, 8, 16, 32, तथा 128, 32, 8, 2, `1/2` के संगत पदों के गुणनफल से बने अनुक्रम का योगफल ज्ञात कीजिए।
ऐसे चार पद ज्ञात कीजिए जो गुणोत्तर श्रेणी में हो, जिसका तीसरा पद प्रथम पद से 9 अधिक हो तथा दूसरा पद चौथे पद से 18 अधिक हो।
यदि किसी गुणोत्तर श्रेणी का pवाँ, qवाँ तथा rवाँ पद क्रमशः a, b, तथा c हो, तो सिद्ध कीजिए कि aq−r br−p cp−q = 1
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा nवाँ पद क्रमशः a तथा b हैं, एवं P, n पदों का गुणनफल हो, तो सिद्ध कीजिए कि P2 = (ab)n
ऐसी दो संख्याएँ ज्ञात कीजिए जिनको 3 तथा 81 के बीच रखने पर प्राप्त अनुक्रम एक गुणोत्तर श्रेणी बन जाए।
गुणोत्तर श्रेणी के कुछ पदों का योग 315 है, उसका प्रथम पद तथा सार्व अनुपात क्रमशः 5 तथा 2 हैं। अंतिम पद तथा पदों की संख्या ज्ञात कीजिए।
किसी गुणोत्तर श्रेणी के पदों की संख्या सम है। यदि उसके सभी पदों का योगफल, विषम स्थान पर रखे पदों के योगफल का 5 गुना है, तो सार्व अनुपात ज्ञात कीजिए।
यदि a, b, c समांतर श्रेणी में हैं b, c, d गुणोत्तर श्रेणी में हैं तथा `1/"c", 1/"d", 1/"e"` समांतर श्रेणी में हैं, तो सिद्ध कीजिए कि a, c, e गुणोत्तर श्रेणी में हैं।