हिंदी

As the intensity of incident light increases ______ - Physics

Advertisements
Advertisements

प्रश्न

As the intensity of incident light increases ______ 

विकल्प

  • photoelectric current increases

  • photoelectric current decreases.

  • the kinetic energy of emitted photoelectrons increases

  • the kinetic energy of emitted photoelectrons decreases.

MCQ
रिक्त स्थान भरें

उत्तर

As the intensity of incident light increases photoelectric current increases.

shaalaa.com
The Photoelectric Effect
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 14: Dual Nature Of Radiation And Matter - MCQ’S

APPEARS IN

एससीईआरटी महाराष्ट्र Physics [English] 12 Standard HSC
अध्याय 14 Dual Nature Of Radiation And Matter
MCQ’S | Q 2

संबंधित प्रश्न

If the frequency of incident light falling on a photosensitive material is doubled, then the kinetic energy of the emitted photoelectron will be ______.


Can microwaves be used in the experiment on photoelectric effect?


Is it always possible to see the photoelectric effect with a red light?


Observations from an experiment on the photoelectric effect for the stopping potential by varying the incident frequency were plotted. The slope of the linear curve was found to be approximately 4.1 × 10−15 V s. Given that Exercises the charge of an electron is 1.6 × 10−19 C, find the value of the Planck’s constant h.

It is observed in an experiment on the photoelectric effect that an increase in the intensity of the incident radiation does not change the maximum kinetic energy of the electrons. Where does the extra energy of the incident radiation go? Is it lost? State your answer with explanatory reasoning.


Photocurrent recorded in the microammeter in an experimental setup of the photoelectric effect vanishes when the retarding potential is more than 0.8 V if the wavelength of incident radiation is 4950 Å. If the source of incident radiation is changed, the stopping potential turns out to be 1.2 V. Find the work function of the cathode material and the wavelength of the second source.


The maximum kinetic energy of the photoelectrons depends only on ______ 


Draw a neat labelled diagram of a schematic of the experimental setup for the photoelectric effect. 


Explain the concept of the photoelectric effect. 


State Einstein photoelectric equation. Explain 2 characteristics of the photoelectric effect on the basis of Einstein’s photoelectric equation. 


What is the photoelectric effect? Define stopping potential and photoelectric work function. 


The maximum velocity of photoelectron emitted is 4.8 m/s. If the e/m ratio of the electron is 1.76 × 1011 C/kg, then stopping potential is given by ______ 


The ratio of energies of photons produced due to transition of electron of hydrogen atom from its (i) second to first energy level and (ii) highest energy level to second level is respectively.


When light falls on a metal surface, the maximum kinetic energy of the emitted photoelectrons depends upon ______


If the maximum kinetic energy of emitted electrons in photoelectric effect is 3.2 × 10-19 J and the work-function for metal is 6.63 × 10-19 J, then stopping potential and threshold wavelength respectively are
[Planck's constant, h = 6.63 × 1034 J-s]
[Velocity of light, c = 3 × 108 `"m"/"s"`]
[Charge on electron= 1.6 × 10-19 C]


A metal surface is illuminated by light of given intensity and frequency to cause photoemission. If the intensity of illumination is reduced to one-fourth of its original value then the maximum KE of the emitted photoelectrons would be ______.


The work function of a metallic surface is 5.01 eV. The photoelectrons are emitted when light of wavelength 2000 Å falls on it. The potential difference applied to stop the fastest photoelectrons is [h = 4.14 x 10-15 eV sec] ____________.


In photoelectric effect, for a light of different intensities but of same frequency, the stopping potential for a given metal is ____________.


When light of wavelength 'λ' is incident on a photosensitive surface, the stopping potential is 'V'. When light of wavelength '3λ' is incident on the same surface, the stopping potential is `"V"/6`. Threshold wavelength for the surface is _______.


The photo electric effect to take place for a metal, the minimum frequency required is 5.792 × 1014 Hz. A light of wavelength 6000 Å is incident on that metal surface. What is the corresponding frequency of light and will there be photoelectric emissions? [velocity of light = 3 × 108 m/s]


The photon of frequency vis incident on a metal surface whose threshold frequency is v0. The kinetic energy of the emitted photoelectrons will be ______.


A metal surface having work function 'w0' emits photoelectrons when photons of energy 'E' are incident on it. The electron enters the uniform magnetic field (B) in perpendicular direction and moves in circular path of radius 'r'. Then 'r' is equal to (m and e be the mass and charge of electron respectively) ____________.


In experiment of photoelectric effect, the stopping potential for incident yellow light of wavelength 5890 Å is 4 volt. If the yellow light is replaced by blue light of wavelength 4000 Å, the stopping potential is ____________.


When radiation of wavelength λ is used to illuminate a metallic surface, the stopping potential is V. When the same surface is illuminated with radiation of wavelength 3λ, the stopping potential is `"V"/4`. If the threshold wavelength for the metallic surface is nλ. then value of n will be ______.


A point isotropic light source of power P = 12 watts is located on the axis of a circular mirror of radius R = 3 cm. If the distance of the source from the centre of the mirror is a = 39 cm and the reflection coefficient of the mirror is α = 0.70 then the force exerted by the light ray on the mirror is ______ × 10-10 N.


Two radiations of photons energies 1 eV and 2.5 eV, successively illuminate a photosensitive metallic surface of work function 0.5 eV. The ratio of the maximum speeds of the emitted electrons is ______.


In a photocell, frequency of incident radiation is increased by keeping other factors constant (v > v0), the stopping potential ______.


When monochromatic light of frequency v1 falls on a metal surface, the stopping potential required is found to be V1. If the radiation of frequency v2 is incident on the surface, the stopping potential required V2 is ______. (v2 > v1)


Define photoelectric work function of a metal.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×