Advertisements
Advertisements
प्रश्न
Assume that a drug causes a serious side effect at a rate of three patients per one hundred. What is the probability that atleast one person will have side effects in a random sample of ten patients taking the drug?
उत्तर
Here n = 10
p = `3/10`, q = `1 - "p" = 1 - 3/100`
q = `97/100`
The binomial distribution is P(X = x) = ncxpxqn-x
= `10"c"_x (3/100)^x (97/100)^(10 - x)`
Probability that atleast one person will have side effect
= P(X ≥ 1)
= `1 - "P"("X" < 1)`
= `1 - "P"("X" = 0)`
= `1 - [10"c"_0 (3/100)^0 (97/100)^(10 - 0)]`
= `1 - [(1)(1)(97/10)^10]`
= `1 - (0.97)^10`
= `1 - 0.4656`
= 0.5344
APPEARS IN
संबंधित प्रश्न
Derive the mean and variance of binomial distribution
Mention the properties of poisson distribution
In a distribution 30% of the items are under 50 and 10% are over 86. Find the mean and standard deviation of the distribution
Choose the correct alternative:
If X ~ N(µ, σ2), the maximum probability at the point of inflexion of normal distribution
Choose the correct alternative:
Cape town is estimated to have 21% of homes whose owners subscribe to the satellite service, DSTV. If a random sample of your home is taken, what is the probability that all four homes subscribe to DSTV?
Choose the correct alternative:
If P(Z > z) = 0.8508 what is the value of z (z has a standard normal distribution)?
Choose the correct alternative:
In a binomial distribution, the probability of success is twice as that of failure. Then out of 4 trials, the probability of no success is
The time taken to assemble a car in a certain plant is a random variable having a normal distribution of 20 hours and a standard deviation of 2 hours. What is the probability that a car can be assembled at this plant in a period of time. Between 20 and 22 hours?
The annual salaries of employees in a large company are approximately normally distributed with a mean of $50,000 and a standard deviation of $20,000. What percent of people earn less than $40,000?
X is a normally distributed variable with mean µ = 30 and standard deviation σ = 4. Find P(X < 40)