Advertisements
Advertisements
प्रश्न
Derive the mean and variance of binomial distribution
उत्तर
Derivation of the Mean and Variance of Binomial distribution:
The mean of the binomial distribution
`"E"("X") =sum_(x = 0)^"n" (("n"),(x))"p"^x "q"^("n" - x)`
= `"p" sum_(x = 0)^"n" x*(("n")/(x)) (("n"- 1),(x - 1)) "p"^(x - 1)"q"^("n"- x)`
= np(q + p)n – 1 ......[since p + q = 1]
= np
E(X) = np
The mean of the binomial distribution is np.
Var(X) = E(X2) – E(X2)
Here `"E"("X"^2) = sum_(x = 0)^"n" x^2 (("n"),(x))"p"^x"q"^("n" - x)`
`sum_(x - 0)^"n" {x(x - 1) + x} (("n"),(x))"p"^x"q"^("n" - x)`
`sum_(x - 0)^"n" {x(x - 1) + x} (("n"),(x))"p"^x"q"^("n" - x) + sum x (("n"),(x))"p"^x"q"^("n" - x)`
`sum_(x = 0)^"n" {x(x - 1)} (("n"("n" - 1))/(x(x - 1)))(("n" - 2),(x - 2))"p"^(x - 2)"q"^(n - x) + sum x (("n"),(x))"p"^x"q"^("n" - x)`
= `"n"("n" - 1)"p"^2 {sum(("n" - 2),(x - ))"p"^(x - 2)"q"^("n" - x)} + "np"`
= n(n – 1)p2(q + p)(n – 2) + np
n(n – 1 )p2 + np
Variance = E(X2) – [E(X)]2
= n2p2 – np2 + np – n2p2
= np(1 – p) = npq
Hence, mean of the BD is np and the Variance is npq.
APPEARS IN
संबंधित प्रश्न
Mention the properties of binomial distribution.
Defects in yarn manufactured by a local mill can be approximated by a distribution with a mean of 1.2 defects for every 6 metres of length. If lengths of 6 metres are to be inspected, find the probability of less than 2 defects
If 18% of the bolts produced by a machine are defective, determine the probability that out of the 4 bolts chosen at random atmost 2 will be defective
Forty percent of business travellers carry a laptop. In a sample of 15 business travelers, what is the probability that atleast three of the travelers have a laptop?
An experiment succeeds twice as often as it fails, what is the probability that in next five trials there will be three successes
Define Poisson distribution
In a test on 2,000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2,040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for more 1,920 hours but less than 2,100 hours
Choose the correct alternative:
Forty percent of the passengers who fly on a certain route do not check in any luggage. The planes on this route seat 15 passengers. For a full flight, what is the mean of the number of passengers who do not check in any luggage?
The annual salaries of employees in a large company are approximately normally distributed with a mean of $50,000 and a standard deviation of $20,000. What percent of people earn between $45,000 and $65,000?
People’s monthly electric bills in Chennai are normally distributed with a mean of ₹ 225 and a standard deviation of ₹ 55. Those people spend a lot of time online. In a group of 500 customers, how many would we expect to have a bill that is ₹ 100 or less?