Advertisements
Advertisements
Question
Assume that a drug causes a serious side effect at a rate of three patients per one hundred. What is the probability that atleast one person will have side effects in a random sample of ten patients taking the drug?
Solution
Here n = 10
p = `3/10`, q = `1 - "p" = 1 - 3/100`
q = `97/100`
The binomial distribution is P(X = x) = ncxpxqn-x
= `10"c"_x (3/100)^x (97/100)^(10 - x)`
Probability that atleast one person will have side effect
= P(X ≥ 1)
= `1 - "P"("X" < 1)`
= `1 - "P"("X" = 0)`
= `1 - [10"c"_0 (3/100)^0 (97/100)^(10 - 0)]`
= `1 - [(1)(1)(97/10)^10]`
= `1 - (0.97)^10`
= `1 - 0.4656`
= 0.5344
APPEARS IN
RELATED QUESTIONS
Define Binomial distribution
Defects in yarn manufactured by a local mill can be approximated by a distribution with a mean of 1.2 defects for every 6 metres of length. If lengths of 6 metres are to be inspected, find the probability of less than 2 defects
If 18% of the bolts produced by a machine are defective, determine the probability that out of the 4 bolts chosen at random exactly one will be defective
It is given that 5% of the electric bulbs manufactured by a company are defective. Using poisson distribution find the probability that a sample of 120 bulbs will contain no defective bulb
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be exactly 3 calls
The average number of customers, who appear in a counter of a certain bank per minute is two. Find the probability that during a given minute three or more customers appear
Write down the conditions in which the Normal distribution is a limiting case of binomial distribution
In a test on 2,000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2,040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for less than 1,950 hours
Choose the correct alternative:
If X ~ N(µ, σ2), the maximum probability at the point of inflexion of normal distribution
Choose the correct alternative:
In a parametric distribution the mean is equal to variance is