Advertisements
Advertisements
Question
In a test on 2,000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2,040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for less than 1,950 hours
Solution
Let x denote the burning of the bulb follows normal distribution with mean 2,040 and standard deviation 60 hours.
Here m = 2040
σ = 60
N = 2000
The standard normal variate
z = `(x - mu)/sigma`
= `(x - 2040)/60`
P(less than 1950 hours)
P(X < 1950)
When x = 1950
z = `(1950 - 3040)/60`
= `(-90)/60`
= – 1.5
P(X < 1950) = P(Z < – 1.5) = P(Z > 1.5)
= 0.5 – 0.4332
= 0.068
Numbers of bulbs whose burning time is less than
1950
= 0.0668 × 2000
= 133.6
= 134 ......(approximately)
APPEARS IN
RELATED QUESTIONS
In a test on 2,000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2,040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for more 1,920 hours but less than 2,100 hours
If the heights of 500 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches, how many students have height greater than 72 inches
Choose the correct alternative:
Normal distribution was invented by
Choose the correct alternative:
Forty percent of the passengers who fly on a certain route do not check in any luggage. The planes on this route seat 15 passengers. For a full flight, what is the mean of the number of passengers who do not check in any luggage?
Choose the correct alternative:
In a large statistics class, the heights of the students are normally distributed with a mean of 172 cm and a variance of 25 cm. What proportion of students is between 165cm and 181 cm in height?
Choose the correct alternative:
Using the standard normal table, the sum of the probabilities to the right of z = 2.18 and to the left of z = – 1.75 is
Choose the correct alternative:
Monthly expenditure on their credit cards, by credit cardholders from a certain bank, follows a normal distribution with a mean of ₹ 1,295.00 and a standard deviation of ₹ 750.00. What proportion of credit cardholders spend more than ₹ 1,500.00 on their credit cards per month?
Choose the correct alternative:
If P(Z > z) = 0.5832 what is the value of z (z has a standard normal distribution)?
Hospital records show that of patients suffering from a certain disease 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover?
Vehicles pass through a junction on a busy road at an average rate of 300 per hour. What is the expected number passing in two minutes?