Advertisements
Advertisements
Question
In a test on 2,000 electric bulbs, it was found that bulbs of a particular make, was normally distributed with an average life of 2,040 hours and standard deviation of 60 hours. Estimate the number of bulbs likely to burn for more than 2,150 hours
Solution
Let x denote the burning of the bulb follows normal distribution with mean 2,040 and standard deviation 60 hours.
Here m = 2040
σ = 60
N = 2000
The standard normal variate
z = `(x - mu)/sigma`
= `(x - 2040)/60`
P(morethan 2,150 hours)
P(X > 2150)
When x = 2150
z = `(2150 - 2040)/60`
= `110/60`
= 1.833
P(X > 2150) = P(Z > 1.833)
= P(0 < z < `oo`) – P(0 < z < 1.833)
= 0.5 – 0.4664
= 0.0336
∴ Number of bulbs whose burning time is more than 2150 hours
= 0.0336 × 2000
= 67.2
= 67 .......(approximately)
APPEARS IN
RELATED QUESTIONS
Define Binomial distribution
If 5% of the items produced turn out to be defective, then find out the probability that out of 20 items selected at random there are find the mean and variance
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be exactly 3 calls
If the heights of 500 students are normally distributed with mean 68.0 inches and standard deviation 3.0 inches, how many students have height less than or equal to 64 inches
Choose the correct alternative:
If X ~ N(µ, σ2), the maximum probability at the point of inflexion of normal distribution
Choose the correct alternative:
An experiment succeeds twice as often as it fails. The chance that in the next six trials, there shall be at least four successes is
Choose the correct alternative:
Cape town is estimated to have 21% of homes whose owners subscribe to the satellite service, DSTV. If a random sample of your home is taken, what is the probability that all four homes subscribe to DSTV?
Choose the correct alternative:
The time until the first failure of a brand of inkjet printers is normally distributed with a mean of 1,500 hours and a standard deviation of 200 hours. What proportion of printers fails before 1000 hours?
A manufacturer of metal pistons finds that on the average, 12% of his pistons are rejected because they are either oversize or undersize. What is the probability that a batch of 10 pistons will contain at least 2 rejects?
Hospital records show that of patients suffering from a certain disease 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover?