Advertisements
Advertisements
Question
If 5% of the items produced turn out to be defective, then find out the probability that out of 20 items selected at random there are find the mean and variance
Solution
Probability of getting a defective item
p = `5/100 = 1/20`
q = 1 – p
⇒ q = `1 - 1/20`
= `(20 - 1)/20`
q = `19/20` and n = 10
In binomial distribution
P(X = x) = nCxpxqn-x
Here (X = x)= `10"C"_x (1/20)^x (19/20)(10 - x)`
Mean E(x) = np
= `10 xx 1/20`
= `1/2`
= 0.5
Varaince = npq
= `10 xx 1/20`
= `19/20`
= `19/40`
= 0.475
APPEARS IN
RELATED QUESTIONS
Defects in yarn manufactured by a local mill can be approximated by a distribution with a mean of 1.2 defects for every 6 metres of length. If lengths of 6 metres are to be inspected, find the probability of less than 2 defects
The distribution of the number of road accidents per day in a city is poisson with mean 4. Find the number of days out of 100 days when there will be no accident
Choose the correct alternative:
If for a binomial distribution b(n, p) mean = 4 and variance = 4/3, the probability, P(X ≥ 5) is equal to
Choose the correct alternative:
Which of the following cannot generate a Poisson distribution?
Choose the correct alternative:
Using the standard normal table, the sum of the probabilities to the right of z = 2.18 and to the left of z = – 1.75 is
Choose the correct alternative:
The time until the first failure of a brand of inkjet printers is normally distributed with a mean of 1,500 hours and a standard deviation of 200 hours. What proportion of printers fails before 1000 hours?
Choose the correct alternative:
The weights of newborn human babies are normally distributed with a mean of 3.2 kg and a standard deviation of 1.1 kg. What is the probability that a randomly selected newborn baby weight less than 2.0 kg?
Hospital records show that of patients suffering from a certain disease 75% die of it. What is the probability that of 6 randomly selected patients, 4 will recover?
Vehicles pass through a junction on a busy road at an average rate of 300 per hour. What is the expected number passing in two minutes?
X is a normally distributed variable with mean µ = 30 and standard deviation σ = 4. Find P(X < 40)