Advertisements
Advertisements
Question
In a particular university 40% of the students are having newspaper reading habit. Nine university students are selected to find their views on reading habit. Find the probability that none of those selected have newspaper reading habit
Solution
Let p to the probability of having newspaper reading habit
p = `40/100 = 2/5`
q = 1 – p
= `1 2/5`
= `(5 - 2)/5`
= `3/5` and n = 9
In the binomial distribution p(x = 4) = ncx pxqn-r
The binomial distribution P(x) = `9"C"_x (2/5)^x (3/5)^(9 - x)`
P(none of those selected have newspaper reading
= P(X = 0)
= `9"C"_0 (2/5)^0 (3/5)^(9 - 0)`
= `(1)(1)(3/5)^9`
= `3^9/5^9`
= `(27 xx 27 xx 27)/(125 xx 125 xx 125)`
= `21141/1953125`
= 0.0108
APPEARS IN
RELATED QUESTIONS
Out of 750 families with 4 children each, how many families would be expected to have atleast one boy
Assume that a drug causes a serious side effect at a rate of three patients per one hundred. What is the probability that atleast one person will have side effects in a random sample of ten patients taking the drug?
A car hiring firm has two cars. The demand for cars on each day is distributed as a Poison variate, with mean 1.5. Calculate the proportion of days on which some demand is refused
The average number of phone calls per minute into the switchboard of a company between 10.00 am and 2.30 pm is 2.5. Find the probability that during one particular minute there will be atleast 5 calls
Time taken by a construction company to construct a flyover is a normal variate with mean 400 labour days and a standard deviation of 100 labour days. If the company promises to construct the flyover in 450 days or less and agree to pay a penalty of ₹ 10,000 for each labour day spent in excess of 450. What is the probability that the company takes at most 500 days to complete the flyover?
Choose the correct alternative:
The random variable X is normally distributed with a mean of 70 and a standard deviation of 10. What is the probability that X is between 72 and 84?
Choose the correct alternative:
In a large statistics class, the heights of the students are normally distributed with a mean of 172 cm and a variance of 25 cm. What proportion of students is between 165cm and 181 cm in height?
Vehicles pass through a junction on a busy road at an average rate of 300 per hour. What is the expected number passing in two minutes?
X is a normally distributed variable with mean µ = 30 and standard deviation σ = 4. Find P(X > 21)
The birth weight of babies is Normally distributed with mean 3,500g and standard deviation 500g. What is the probability that a baby is born that weighs less than 3,100g?