Advertisements
Advertisements
प्रश्न
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively.
The restrictions on n, k and p so that PY + WY will be defined are ______.
विकल्प
k = 3, p = n
k is arbitrary, p = 2
p is arbitrary, k = 3
k = 2, p = 3
उत्तर
The restrictions on n, k and p so that PY + WY will be defined are k = 3, p = n.
Explanation:
Given matrices: X, Y, Z, W and P
Orders: 2 × n, 3 × k, 2 × p, n × 3, p × k
Order of P = p × k,
Order of Y = 3 × k
∴ PY is possible if k = 3
Order of PY = p × k = p × 3
Orders of W and Y are n × 3 and 3 × k = 3 × 3, respectively.
Order of WY = n × 3
The sum of PY and WY is possible only if both of them are of the same order.
p × 3 = n × 3 = p × n
∴ PY + WY is defined if p = n and k = 3
संबंधित प्रश्न
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`
The order of the matrix
In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`
Write the number of elements,
In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`
Write the elements a13, a21, a33, a24, a23
If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?
Construct a 2 × 2 matrix, `A= [a_(ij)]`, whose elements are given by `a_(ij) = i/j`
Construct a 2 × 2 matrix, `A = [a_(ij)]` whose elements are given by `a_(ij) = (1 + 2j)^2/2`
Construct a 3 × 4 matrix, whose elements are given by `a_(ij) = 1/2 |-3i + j|`
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is ______.
Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k respectively.
If n = p, then the order of the matrix is 7X - 5Z is ______.
If A, B are symmetric matrices of same order, then AB − BA is a ______.
Find the value of k if M = `[(1,2),(2,3)]` and `M^2 - km - I_2 = 0`
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
If a matrix has 5 elements, write all possible orders it can have.
Find the matrix X for which:
`[(5, 4),(1,1)]` X=`[(1,-2),(1,3)]`
Write the number of all possible matrices of order 2 x 3 with each entry 1 or 2.
Construct a matrix A = [aij]2×2 whose elements aij are given by aij = e2ix sin jx.
In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The order of the matrix A
Construct a2 × 2 matrix where aij = `("i" - 2"j")^2/2`
Construct a2 × 2 matrix where aij = |–2i + 3j|
Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is ______.
If A is a matrix of order 3 x 4, then each row of A has ____________.
The order of [x y z] `[("a","h","g"),("h","b","f"),("g","f","c")] [("x"),("y"),("z")]` is ____________.
`[(0,-1,1),(2,-3,4),(3,-3,4)]`
If A is an m x n matrix such that AB and BA are both defined, then B is a ____________.
Total number of possible matrices of order 2 × 3 with each entry 1 or 0 is ____________.
Consider the following information regarding the number of men and women workers in three factories I, II and III
MEN WORKERS | WOMEN WORKERS | |
I | 30 | 25 |
II | 25 | 31 |
III | 27 | 26 |
Which of the following represent the above information in the form of a 3 × 2 matrix.
If A is a 2 × 3 matrix such that AB and AB' both are defined, then the order of the matrix B is ______.