Advertisements
Advertisements
प्रश्न
At which position will you keep an object in front of a convex lens so as to get a real image of the same size as the object? Draw a figure.
उत्तर
When an object is placed at the centre of curvature 2F1 of a convex lens, we will get a real image of the same size as the object.
APPEARS IN
संबंधित प्रश्न
An object of height 4 cm is placed at a distance of 20 cm from a concave lens of focal length 10 cm. Use lens formula to determine the position of the image formed.
A student has obtained a point image of a distant object using the given convex lens. To find the focal length of the lens he should measure the distance between the :
(A) lens and the object only
(B) lens and the screen only
(C) object and the image only
(D) lens and the object and also between the object and the image
The image of a candle flame placed at a distance of 30 cm from a spherical lens is formed on a screen placed on the other side of the lens at a distance of 60 cm from the optical centre of the lens. Identify the type of lens and calculate its focal length. If the height of the flame is 3 cm, find the height of its image.
A student wants to project the image of a candle flame on a screen 60 cm in front of a mirror by keeping the flame at a distance of 15 cm from its pole.
(a) Write the type of mirror he should use.
(b) Find the linear magnification of the image produced.
(c) What is the distance between the object and its image?
(d) Draw a ray diagram to show the image formation in this case.
A spherical mirror produces an image of magnification -1 on a screen placed at a distance of 50 cm from the mirror.
(a) Write the type of mirror.
(b) Find the distance of the image from the object.
(c) What is the focal length of the mirror?
(d) Draw the ray diagram to show the image formation in this case.
A student has obtained an image of a distant object on a screen to determine the focal length F1 of the given lens. His teacher, after checking the image, gave him another lens of focal length F2 and asked him to focus the same object on the same screen. The student found that to obtain a sharp image, he has to move the lens away from the screen. From this finding, we may conclude that both the lenses given to the student were :
(A) Concave and F1 < F2
(B) Convex and F1 < F2
(C) Convex and F1 > F2
(D) Concave and F1 > F2
A student was asked by his teacher to find the image distance for various object distance in case of a given convex lens. He performed the experiment with all precautions and noted down his observations in the following table:
S. No. |
Object distance (cm) |
Image distance (cm) |
1 | 60 | 15 |
2 | 48 | 16 |
3 | 36 | 21 |
4 | 24 | 24 |
5 | 18 | 36 |
6 | 16 | 48 |
After checking the observations table the teacher pointed out that there is a mistake in recording the image distance in one of the observations. Find the serial number of the observations having faulty image distance.
(A) 2
(B) 3
(C) 5
(D) 6
An object is held 20 cm away from a converging lens of focal length 10 cm. Find the position of the image formed.
The image seen in a plane mirror cannot be formed on a screen. What name is given to this type of image?
Linear magnification produced by a concave mirror may be:
(a) less than 1 or equal to 1
(b) more than 1 or equal than 1
(c) less than 1, more than 1 or equal to 1
(d) less than 1 or more than 1
In order to obtain a magnification of −2 (minus 2) with a concave mirror, the object should be placed:
(a) between pole and focus
(b) between focus and centre of curvature
(c) at the centre of curvature
(d) beyond the centre of curvature
In order to obtain a magnification of, −0.6 (minus 0.6) with a concave mirror, the object must be placed:
(a) at the focus
(b) between pole and focus
(c) between focus and centre of curvature
(d) beyond the centre of curvature
In order to obtain a magnification of, −1.5 with a concave mirror of focal length 16 cm, the object will have to be placed at a distance
(a) between 6 cm and 16 cm
(b) between 32 cm and 16 cm
(c) between 48 cm and 32 cm
(d) beyond 64 cm
Draw a diagram to show how a converging lens held close to the eye acts as a magnifying glass. Why is it usual to choose a lens of short focal length for this purpose rather than one of long focal length?
Explain what is meant by a virtual, magnified image.
Draw a ray diagram to show the formation of a virtual magnified image of an object by a convex lens. In your diagram, the position of object and image with respect to the principal focus should be shown clearly.
The lens A produces a magnification of, − 0.6 whereas lens B produces a magnification of + 0.6.
What is the nature of lens A?
Draw a ray diagram to show how a converging lens is used as a magnifying glass to observe a small object. Mark on your diagram the foci of the lens and the position of the eye.
An object of height 6 cm is placed perpendicular to the principal axis of a concave lens of focal length 5 cm. Use lens formula to determine the position, size and nature of the image if the distance of the object from the lens is 10 cm.
To determine focal length of a concave mirror a student obtains the image of a well lit distant object on a screen. To determine the focal length of the given concave mirror he needs to measure the distance between:
(A) mirror and the object
(B) mirror and the screen
(C) screen and the object
(D) screen and the object and also mirror and the screen
The image of a candle flame placed at a distance 36 cm from a spherical lens is formed on a screen placed at a distance of 72 cm from the lens. Identify the type of lens and calculate its focal length. If the height of the flame is 2.5 cm, find the height of its image.
At what distance should an object be placed from a lens of focal length 25 cm to obtain its image on a screen placed on the other side at a distance of 50 cm from the lens? What will be the magnification produced in this case?
Give scientific reason.
Simple microscope is used for watch repairs.
Solve the following example.
5 cm high object is placed at a distance of 25 cm from a converging lens of focal length of 10 cm. Determine the position, size and type of the image.
At which position will you keep an object in front of convex lens to get a real image smaller than the object? Draw a figure.
What do you understand by the term magnification?
A lens forms the image of an object placed at a distance 15 cm from it, at a distance 60 cm in front of it. Find the magnification.
An object is placed at a distance of 20 cm in front of a concave lens of focal length 20 cm.
- Find the position of the image, and
- the magnification of the image.
The lens of the eye is flattened when looking at nearby objects.
Magnification of a convex lens is
The image of a candle flame formed by a lens is obtained on a screen placed on the other side of the lens. If the image is three times the size of the flame and the distance between lens and image is 80 cm, at what distance should the candle be placed from the lens? What is the nature of the image at a distance of 80 cm and the lens?
A lens of focal length 5 cm is being used by Debashree in the laboratory as a magnifying glass. Her least distance of distinct vision is 25 cm.
- What is the magnification obtained by using the glass?
- She keeps a book at a distance 10 cm from her eyes and tries to read. She is unable to read. What is the reason for this?
The magnification by a lens is -3. Name the lens and state how are u and v related?