हिंदी

At Which Position Will You Keep an Object in Front of Convex Lens to Get a Real Image Smaller than the Object? Draw a Figure. - Science and Technology 1

Advertisements
Advertisements

प्रश्न

At which position will you keep an object in front of convex lens to get a real image smaller than the object? Draw a figure.

उत्तर

scientifically and technically correct diagram

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) Balbharati Model Question Paper Set 3

संबंधित प्रश्न

A student is using a convex lens of focal length 10 cm to study the image formation by a convex lens for the various positions of the object. In one of his observations, he may observe that when the object is placed at a distance of 20 cm from the lens, its image is formed at (select the correct option)

(A) 20 cm on the other side of the lens and is of the same size, real and erect.

(B) 40 cm on the other side of the lens and is magnified, real and inverted.

(C) 20 cm on the other side of the lens and is of the same size, real and inverted.

(D) 20 cm on the other side of the lens and is of the same size, virtual and erect.


The image formed by a spherical mirror is real, inverted and is of magnification -2. If the image is at a distance of 30 cm from the mirror, where is the object placed? Find the focal length of the mirror. List two characteristics of the image formed if the object is moved 10 cm towards the mirror.


A divergent lens of focal length 30 cm forms the image of an object of size 6 cm on the same side as the object at a distance of 15 cm from its optical centre. Use lens formula to determine the distance of the object from the lens and the size of the image formed.


An object of height 4 cm is placed at a distance of 20 cm from a concave lens of focal length 10 cm. Use lens formula to determine the position of the image formed.


The image of a candle flame placed at a distance of 30 cm from a spherical lens is formed on a screen placed on the other side of the lens at a distance of 60 cm from the optical centre of the lens. Identify the type of lens and calculate its focal length. If the height of the flame is 3 cm, find the height of its image.


A spherical mirror produces an image of magnification -1 on a screen placed at a distance of 50 cm from the mirror.

(a) Write the type of mirror.

(b) Find the distance of the image from the object.

(c) What is the focal length of the mirror?

(d) Draw the ray diagram to show the image formation in this case.


An object is held 20 cm away from a converging lens of focal length 10 cm. Find the position of the image formed.


The image seen in a plane mirror cannot be formed on a screen. What name is given to this type of image?


When an object is placed at a distance of 50 cm from a concave spherical mirror, the magnification produced is, `-1/2`. Where should the object be placed to get a magnification of, `-1/5`? 


An object is placed (a) 20 cm, (b) 4 cm, in front of a concave mirror of focal length 12 cm. Find the nature and position of the image formed in each case.


In order to obtain a magnification of −2 (minus 2) with a concave mirror, the object should be placed:

(a) between pole and focus
(b) between focus and centre of curvature
(c) at the centre of curvature
(d) beyond the centre of curvature


In order to obtain a magnification of, −0.6 (minus 0.6) with a concave mirror, the object must be placed:

(a) at the focus
(b) between pole and focus
(c) between focus and centre of curvature
(d) beyond the centre of curvature


In order to obtain a magnification of, −1.5 with a concave mirror of focal length 16 cm, the object will have to be placed at a distance 

(a) between 6 cm and 16 cm
(b) between 32 cm and 16 cm
(c) between 48 cm and 32 cm
(d) beyond 64 cm


Linear magnification (m) produced by a rear view mirror fitted in vehicles:

(a) is equal to one
(b) is less than one
(c) is more than one
(d) can be more less than one depending on the position of object


Explain what is meant by a virtual, magnified image. 


Draw a ray diagram to show how a converging lens is used as a magnifying glass to observe a small object. Mark on your diagram the foci of the lens and the position of the eye.


The image of a candle flame placed at a distance 30 cm from a spherical lens is formed on a screen placed at a distance of 60 cm from the lens. Identify the type of lens and calculate its focal length. If the height of the flame is 2.4 cm, find the height of its image.


The image of a candle flame placed at a distance 36 cm from a spherical lens is formed on a screen placed at a distance of 72 cm from the lens. Identify the type of lens and calculate its focal length. If the height of the flame is 2.5 cm, find the height of its image.


At which position will you keep an object in front of a convex lens so as to get a real image of the same size as the object? Draw a figure.


Give a scientific reason.

Simple microscope is used for watch repairs.


Solve the following example.

An object kept 60 cm from a lens gives a virtual image 20 cm in front of the lens. What is the focal length of the lens? Is it a converging lens or diverging lens?


What do you understand by the term magnification?


The lens of the eye is flattened when looking at nearby objects.


An object is placed vertically at a distance of 20 cm from a convex lens. If the height of the object is 5 cm and the focal length of the lens is 10 cm, what will be the position, size and nature of the image? How much bigger as compared to the object?


Magnification of a convex lens is


Ravi kept a book at a distance of 10 cm from the eyes of his friend Hari. Hari is not able to read anything written in the book. Give reasons for this?


The magnification produced when an object is placed at a distance of 20 cm from a spherical mirror is +1/2. Where should the object be placed to reduce the magnification to +1/3.


The focal length of a concave lens is 20 cm. At what distance from the lens should a 5 cm tall object be placed so that its image is formed at a distance of 15 cm from the lens? Also calculate the size of the image formed.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×