Advertisements
Advertisements
प्रश्न
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
2x2 + x – 1 = 0
उत्तर
समीकरण 2x2 + x – 1 = 0 के दो वास्तविक और भिन्न मूल हैं।
D = b2 – 4ac
= 12 – 4(2)(–1)
= 1 + 8 > 0
अतः, मूल वास्तविक और भिन्न होते हैं।
APPEARS IN
संबंधित प्रश्न
निम्न समीकरण का मूल ज्ञात कीजिए:
`x - 1/x = 3, x ≠ 0`
निम्न समीकरण का मूल ज्ञात कीजिए:
`1/(x + 4) - 1/(x - 7) = 11/30, x ≠ -4, 7`
निम्न द्विघात समीकरण के मूल की प्रकृति ज्ञात कीजिए। यदि मूल का अस्तित्व हो तो उन्हें ज्ञात कीजिए:
2x2 - 6x + 3 = 0
निम्नलिखित में से किस समीकरण के मूलों का योग 3 है?
बताइए कि क्या निम्नलिखित द्विघात समीकरण के दो भिन्न वास्तविक मूल हैं।अपने उत्तर का औचित्य दीजिए।
3x2 – 4x + 1 = 0
प्रत्येक द्विघात समीकरण का ठीक एक मूल होता हैं।
प्रत्येक द्विघात समीकरण के न्यूनतम दो मूल होते हैं।
यदि b = 0, c < 0 है, तो क्या यह सत्य है कि x2 + bx + c = 0 के मूल संख्यात्मक रूप से बराबर परंतु विपरीत चिन्हों के होंगे? अपने उत्तर का औचित्य दीजिए।
निम्नलिखित में द्विघात सूत्र का प्रयोग करते हुए, द्विघात समीकरण के मूल ज्ञात कीजिए:
ज्ञात कीजिए कि क्या निम्नलिखित समीकरण के वास्तविक मूल हैं। यदि वास्तविक मूल हैं, तो उसे ज्ञात कीजिए।
`x^2 + 5sqrt(5)x - 70 = 0`