Advertisements
Advertisements
प्रश्न
Calculate the co-ordinates of the point P which divides the line segment joining: A (1, 3) and B (5, 9) in the ratio 1 : 2
उत्तर
Let the co-ordinates of the point P be (x, y)
`x = (m_1x_2 + m_2x_1)/(m_1 + m_2)`
= `(1 xx 5 + 2 xx 1)/(1 + 2)`
= `7/3`
`y = (m_1y_2 + m_2y_1)/(m_1 + m_2)`
= `(1 xx 9 + 2 xx 3)/(1 + 2)`
= `15/3`
= 5
Thus, the co-ordinates of point P are `(7/3, 5)`
APPEARS IN
संबंधित प्रश्न
In what ratio is the line joining (2, –3) and (5, 6) divided by the x-axis?
In what ratio does the point (1, a) divide the join of (–1, 4) and (4, –1)? Also, find the value of a.
Calculate the ratio in which the line joining A(-4,2) and B(3,6) is divided by point p(x,3). Also, find x
If the abscissa of a point P is 2, find the ratio in which this point divides the line segment joining the point (−4, 3) and (6, 3). Also, find the co-ordinates of point P.
M is the mid-point of the line segment joining the points A(0, 4) and B(6, 0). M also divides the line segment OP in the ratio 1 : 3. Find :
- co-ordinates of M
- co-ordinates of P
- length of BP
The line segment joining A (2, 3) and B (6, – 5) is intersected by the X axis at the point K. Write the ordinate of the point K. Hence find the ratio in which K divides AB.
If the line joining the points A(4, - 5) and B(4, 5) is divided by the point P such that `"AP"/"AB" = (2)/(5)`, find the coordinates of P.
Determine the ratio in which the line 3x + y – 9 = 0 divides the line joining (1, 3) and (2, 7).
The midpoint of the line segment AB shown in the diagram is (4, – 3). Write down the coordinates of A and B.
Determine the centre of the circle on which the points (1, 7), (7 – 1), and (8, 6) lie. What is the radius of the circle?