हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Can a Vector Have Zero Component Along a Line and Still Have Nonzero Magnitude? - Physics

Advertisements
Advertisements

प्रश्न

Can a vector have zero component along a line and still have nonzero magnitude?

संक्षेप में उत्तर

उत्तर

Yes, a vector can have zero components along a line and still have a nonzero magnitude.
Example: Consider a two dimensional vector \[2\hat { i } + 0 \hat {j}\]. This vector has zero components along a line lying along the Y-axis and a nonzero component along the X-axis. The magnitude of the vector is also nonzero.
Now, magnitude of \[2\hat { i} + 0 \hat {j}\] =  \[\sqrt{2^2 + 0^2} = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Physics and Mathematics - Short Answers [पृष्ठ २८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 2 Physics and Mathematics
Short Answers | Q 8 | पृष्ठ २८

संबंधित प्रश्न

“It is more important to have beauty in the equations of physics than to have them agree with experiments”. The great British physicist P. A. M. Dirac held this view. Criticize this statement. Look out for some equations and results in this book which strike you as beautiful.


Suggest a way to measure the thickness of a sheet of paper.


Suppose a quantity x can be dimensionally represented in terms of M, L and T, that is, `[ x ] = M^a L^b T^c`.  The quantity mass


Choose the correct statements(s):


Find the dimensions of linear momentum . 


Find the dimensions of pressure.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

Let \[\vec{C} = \vec{A} + \vec{B}\]


Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


Let \[\vec{a} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j} + 5 \vec{k}\] Find the angle between them.


If \[\vec{A} , \vec{B} , \vec{C}\] are mutually perpendicular, show that  \[\vec{C} \times \left( \vec{A} \times \vec{B} \right) = 0\] Is the converse true?


The electric current in a charging R−C circuit is given by i = i0 e−t/RC where i0, R and C are constant parameters of the circuit and t is time. Find the rate of change of current at (a) t = 0, (b) t = RC, (c) t = 10 RC.


If π = 3.14, then the value of π2 is ______


High speed moving particles are studied under


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×