हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Add Vectors → a , → B and → C Each Having Magnitude of 100 Unit and Inclined to the X-axis at Angles 45°, 135° and 315° Respectively. - Physics

Advertisements
Advertisements

प्रश्न

Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.

संक्षेप में उत्तर

उत्तर

First, we will find the components of the vector along the x-axis and y-axis. Then we will find the resultant x and y-components.  
x-component of \[\vec{A} = \ A\ cos \ 45^\circ =100 \cos 45^\circ = \frac{100}{\sqrt{2}} \text { unit }\]

x-component of \[\vec{B} = \vec{B} \cos 135^\circ = - \frac{100}{\sqrt{2}}\]

x-component of \[\vec{C}\] = \[\vec{C}\] cos 315\[^\circ\]

= 100 cos 315°

\[= 100 \cos 45^\circ = \frac{100}{\sqrt{2}}\]
Resultant x-component \[= \frac{100}{\sqrt{2}} - \frac{100}{\sqrt{2}} + \frac{100}{\sqrt{2}} = \frac{100}{\sqrt{2}}\]
Now, y-component of \[\vec{A} = 100 \sin 45^\circ = \frac{100}{\sqrt{2}}\]
y-component of \[\vec{B} = 100 \sin 135^\circ = \frac{100}{\sqrt{2}}\] 
y-component of \[\vec{C} = 100 \sin 315^\circ = - \frac{100}{\sqrt{2}}\]
Resultant y-component
\[= \frac{100}{\sqrt{2}} + \frac{100}{\sqrt{2}} - \frac{100}{\sqrt{2}} = \frac{100}{\sqrt{2}}\]
Magnitude of the resultant \[= \sqrt{\left( \frac{100}{\sqrt{2}} \right)^2 + \left( \frac{100}{\sqrt{2}} \right)^2}\] 
 
\[= \sqrt{10000} = 100\]
Angle made by the resultant vector with the x-axis is given by

\[\tan \alpha = \frac{\text { y comp}}{\text { x comp }}\]

\[ = \frac{100\sqrt{2}}{100\sqrt{2}} = 1\]

⇒ α = tan−1 (1) = 45°

∴ The magnitude of the resultant vector is 100 units and it makes an angle of 45° with the x-axis.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Physics and Mathematics - Exercise [पृष्ठ २९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 2 Physics and Mathematics
Exercise | Q 3 | पृष्ठ २९

संबंधित प्रश्न

India has had a long and unbroken tradition of great scholarship — in mathematics, astronomy, linguistics, logic and ethics. Yet, in parallel with this, several superstitious and obscurantistic attitudes and practices flourished in our society and unfortunately continue even today — among many educated people too. How will you use your knowledge of science to develop strategies to counter these attitudes ?


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


Choose the correct statements(s):


Find the dimensions of linear momentum . 


Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.


Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


The height of mercury column in a barometer in a Calcutta laboratory was recorded to be 75 cm. Calculate this pressure in SI and CGS units using the following data : Specific gravity of mercury = \[13 \cdot 6\] , Density of \[\text{ water} = {10}^3 kg/ m^3 , g = 9 \cdot 8 m/ s^2\] at Calcutta. Pressure
= hpg in usual symbols.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


The radius of a circle is stated as 2.12 cm. Its area should be written as


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


The magnitude of the vector product of two vectors \[\left| \vec{A} \right|\] and \[\left| \vec{B} \right|\] may be

(a) greater than AB
(b) equal to AB
(c) less than AB
(d) equal to zero.


A vector \[\vec{A}\] makes an angle of 20° and \[\vec{B}\] makes an angle of 110° with the X-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.


Refer to figure (2 − E1). Find (a) the magnitude, (b) x and y component and (c) the angle with the X-axis of the resultant of \[\overrightarrow{OA}, \overrightarrow{BC} \text { and } \overrightarrow{DE}\].


A spy report about a suspected car reads as follows. "The car moved 2.00 km towards east, made a perpendicular left turn, ran for 500 m, made a perpendicular right turn, ran for 4.00 km and stopped". Find the displacement of the car.


A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


The electric current in a charging R−C circuit is given by i = i0 e−t/RC where i0, R and C are constant parameters of the circuit and t is time. Find the rate of change of current at (a) t = 0, (b) t = RC, (c) t = 10 RC.


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×