हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Find the Dimensions of Angular Speed ω. - Physics

Advertisements
Advertisements

प्रश्न

Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.

योग

उत्तर

(a) Dimensions of angular speed,
\[\omega = \frac{\theta}{t} = \left[ M^0 L^0 T^{- 1} \right]\]
(b) Angular acceleration,
\[\alpha = \frac{\omega}{t}\]
Here, ω = [M0L0T−1] and = [T]
So, dimensions of angular acceleration = [M0L0T−2]
(c) Torque, τ =Frsinθ
Here, F = [MLT−2] and r = [L]
So, dimensions of torque = [ML2T−2]
(d) Moment of inertia = mr2
Here, m = [M] and r2 = [L2]
So, dimensions of moment of inertia = [ML2T0]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Introduction to Physics - Exercise [पृष्ठ ९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 1 Introduction to Physics
Exercise | Q 2 | पृष्ठ ९

संबंधित प्रश्न

If all the terms in an equation have same units, is it necessary that they have same dimensions? If all the terms in an equation have same dimensions, is it necessary that they have same units?


Find the dimensions of pressure.


Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


Find the dimensions of the coefficient of linear expansion α and


Theory of relativity reveals that mass can be converted into energy. The energy E so obtained is proportional to certain powers of mass m and the speed c of light. Guess a relation among the quantities using the method of dimensions.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Is a vector necessarily changed if it is rotated through an angle?


Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


A vector is not changed if


Let \[\vec{C} = \vec{A} + \vec{B}\]


Refer to figure (2 − E1). Find (a) the magnitude, (b) x and y component and (c) the angle with the X-axis of the resultant of \[\overrightarrow{OA}, \overrightarrow{BC} \text { and } \overrightarrow{DE}\].


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.


Write the number of significant digits in (a) 1001, (b) 100.1, (c) 100.10, (d) 0.001001.


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×