हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Test If the Following Equations Are Dimensionally Correct: V = 1 2 π √ M G L I ; Where H = Height, S = Surface Tension, ρ = Density, P = Pressure, V = Volume, - Physics

Advertisements
Advertisements

प्रश्न

Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.

योग

उत्तर

\[\nu = \frac{1}{2\pi}\sqrt{\left( \frac{mgl}{I} \right)}\]
Frequency, ν = [T−1]

\[\sqrt{\left( \frac{mgl}{I} \right)} = \sqrt{\frac{\left[ M \right] \left[ {LT}^{- 2} \right] \left[ L \right]}{\left[ {ML}^2 \right]}}\]

\[ \Rightarrow \left[ \frac{\left[ {ML}^2 T^{- 2} \right]}{\left[ {ML}^2 \right]} \right]^\frac{1}{2} = \left[ T^{- 1} \right]\]
Since the dimensions of both sides of the equation are the same, the equation is dimensionally correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Introduction to Physics - Exercise [पृष्ठ १०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 1 Introduction to Physics
Exercise | Q 18.4 | पृष्ठ १०

संबंधित प्रश्न

A physical quantity is measured and the result is expressed as nu where u is the unit used and n is the numerical value. If the result is expressed in various units then 


The dimensions ML−1 T−2 may correspond to


Find the dimensions of linear momentum . 


Find the dimensions of pressure.


Find the dimensions of the specific heat capacity c.
(a) the specific heat capacity c,
(b) the coefficient of linear expansion α and
(c) the gas constant R.
Some of the equations involving these quantities are \[Q = mc\left( T_2 - T_1 \right), l_t = l_0 \left[ 1 + \alpha\left( T_2 - T_1 \right) \right]\] and PV = nRT.


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure


Test if the following equation is dimensionally correct:
\[V = \frac{\pi P r^4 t}{8 \eta l}\]

where v = frequency, P = pressure, η = coefficient of viscosity.


Can a vector have zero component along a line and still have nonzero magnitude?


A vector is not changed if


Let the angle between two nonzero vectors \[\vec{A}\] and \[\vec{B}\] be 120° and its resultant be \[\vec{C}\].


The x-component of the resultant of several vectors
(a) is equal to the sum of the x-components of the vectors of the vectors
(b) may be smaller than the sum of the magnitudes of the vectors
(c) may be greater than the sum of the magnitudes of the vectors
(d) may be equal to the sum of the magnitudes of the vectors.


Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].


Refer to figure (2 − E1). Find (a) the magnitude, (b) x and y component and (c) the angle with the X-axis of the resultant of \[\overrightarrow{OA}, \overrightarrow{BC} \text { and } \overrightarrow{DE}\].


Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.


If \[\vec{A} , \vec{B} , \vec{C}\] are mutually perpendicular, show that  \[\vec{C} \times \left( \vec{A} \times \vec{B} \right) = 0\] Is the converse true?


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


The electric current in a charging R−C circuit is given by i = i0 e−t/RC where i0, R and C are constant parameters of the circuit and t is time. Find the rate of change of current at (a) t = 0, (b) t = RC, (c) t = 10 RC.


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×