हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Let I = Current Through a Conductor, R = Its Resistance and V = Potential Difference Across Its Ends. According to Ohm'S Law, - Physics

Advertisements
Advertisements

प्रश्न

Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.

योग

उत्तर

Dimensional formula of resistance, [R] = [ML2A−2T−3]    ...(1)
Dimensional formula of potential difference, [V] = [ML2A−1T−3]    ...(2)
Dimensional formula of current,  I = [A]

Dividing (2) by (1), we get:
\[\frac{\left[ V \right]}{\left[ R \right]} = \frac{\left[ {ML}^2 A^{- 1} T^{- 3} \right]}{\left[ {ML}^2 A^{- 2} T^{- 3} \right]} = \left[ A \right]\]
⇒ V = IR

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Introduction to Physics - Exercise [पृष्ठ १०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 1 Introduction to Physics
Exercise | Q 16 | पृष्ठ १०

संबंधित प्रश्न

Some of the most profound statements on the nature of science have come from Albert Einstein, one of the greatest scientists of all time. What do you think did Einstein mean when he said : “The most incomprehensible thing about the world is that it is comprehensible”?


“Every great physical theory starts as a heresy and ends as a dogma”. Give some examples from the history of science of the validity of this incisive remark


India has had a long and unbroken tradition of great scholarship — in mathematics, astronomy, linguistics, logic and ethics. Yet, in parallel with this, several superstitious and obscurantistic attitudes and practices flourished in our society and unfortunately continue even today — among many educated people too. How will you use your knowledge of science to develop strategies to counter these attitudes ?


What are the dimensions of volume of a cube of edge a.


What are the dimensions of the ratio of the volume of a cube of edge a to the volume of a sphere of radius a?


The dimensions ML−1 T−2 may correspond to


Choose the correct statements(s):
(a) All quantities may be represented dimensionally in terms of the base quantities.
(b) A base quantity cannot be represented dimensionally in terms of the rest of the base quantities.
(c) The dimensions of a base quantity in other base quantities is always zero.
(d) The dimension of a derived quantity is never zero in any base quantity.


Find the dimensions of frequency .


Find the dimensions of the coefficient of linear expansion α and


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


If \[\vec{A} \times \vec{B} = 0\] can you say that

(a) \[\vec{A} = \vec{B} ,\]

(b) \[\vec{A} \neq \vec{B}\] ?


Which of the sets given below may represent the magnitudes of three vectors adding to zero?


A vector \[\vec{A}\] points vertically upward and \[\vec{B}\] points towards the north. The vector product \[\vec{A} \times \vec{B}\] is


A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.


Suppose \[\vec{a}\] is a vector of magnitude 4.5 units due north. What is the vector (a) \[3 \vec{a}\], (b) \[- 4 \vec{a}\] ?


Let \[\vec{a} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j} + 5 \vec{k}\] Find the angle between them.


A curve is represented by y = sin x. If x is changed from \[\frac{\pi}{3}\text{ to }\frac{\pi}{3} + \frac{\pi}{100}\] , find approximately the change in y. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×