हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Test if the following equation is dimensionally correct:v=Pρ, where v = velocity, ρ = density, P = pressure - Physics

Advertisements
Advertisements

प्रश्न

Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure

संख्यात्मक

उत्तर

\[\nu = \sqrt{\left( \frac{P}{\rho} \right)}\]
Velocity, [ν] = [LT−1]
Pressure,
\[P = \frac{\left[ F \right]}{\left[ A \right]} = \left[ {ML}^{- 1} T^{- 2} \right]\]
Density,
\[\left[ \rho \right] = \frac{\left[ M \right]}{\left[ V \right]} = \left[ {ML}^{- 3} T^0 \right]\]
Now,
\[\sqrt{\frac{P}{\rho}} = \left[ \frac{\left[ {ML}^{- 1} T^{- 2} \right]}{\left[ {ML}^{- 3} \right]} \right]^\frac{1}{2} = \left[ L^2 T^{- 2} \right]^{1/2} = \left[ {LT}^{- 1} \right]\]

Since the dimensions of both sides of the equation are the same, the equation is dimensionally correct.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Introduction to Physics - Exercise [पृष्ठ १०]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 1 Introduction to Physics
Exercise | Q 18.2 | पृष्ठ १०

संबंधित प्रश्न

India has had a long and unbroken tradition of great scholarship — in mathematics, astronomy, linguistics, logic and ethics. Yet, in parallel with this, several superstitious and obscurantistic attitudes and practices flourished in our society and unfortunately continue even today — among many educated people too. How will you use your knowledge of science to develop strategies to counter these attitudes ?


What are the dimensions of volume of a cube of edge a.


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


The dimensions ML−1 T−2 may correspond to


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Let ε1 and ε2 be the angles made by  \[\vec{A}\] and -\[\vec{A}\] with the positive X-axis. Show that tan ε1 = tan ε2. Thus, giving tan ε does not uniquely determine the direction of \[\vec{A}\].

  

Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


The resultant of  \[\vec{A} \text { and } \vec{B}\] makes an angle α with  \[\vec{A}\] and β with \[\vec{B}\],


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


Let the angle between two nonzero vectors \[\vec{A}\] and \[\vec{B}\] be 120° and its resultant be \[\vec{C}\].


The x-component of the resultant of several vectors
(a) is equal to the sum of the x-components of the vectors of the vectors
(b) may be smaller than the sum of the magnitudes of the vectors
(c) may be greater than the sum of the magnitudes of the vectors
(d) may be equal to the sum of the magnitudes of the vectors.


Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].


A spy report about a suspected car reads as follows. "The car moved 2.00 km towards east, made a perpendicular left turn, ran for 500 m, made a perpendicular right turn, ran for 4.00 km and stopped". Find the displacement of the car.


Two vectors have magnitudes 2 m and 3m. The angle between them is 60°. Find (a) the scalar product of the two vectors, (b) the magnitude of their vector product.


Jupiter is at a distance of 824.7 million km from the Earth. Its angular diameter is measured to be 35.72˝. Calculate the diameter of Jupiter.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×