English
Karnataka Board PUCPUC Science Class 11

Test if the following equation is dimensionally correct:v=Pρ, where v = velocity, ρ = density, P = pressure - Physics

Advertisements
Advertisements

Question

Test if the following equation is dimensionally correct:
\[v = \sqrt{\frac{P}{\rho}},\]

where v = velocity, ρ = density, P = pressure

Numerical

Solution

\[\nu = \sqrt{\left( \frac{P}{\rho} \right)}\]
Velocity, [ν] = [LT−1]
Pressure,
\[P = \frac{\left[ F \right]}{\left[ A \right]} = \left[ {ML}^{- 1} T^{- 2} \right]\]
Density,
\[\left[ \rho \right] = \frac{\left[ M \right]}{\left[ V \right]} = \left[ {ML}^{- 3} T^0 \right]\]
Now,
\[\sqrt{\frac{P}{\rho}} = \left[ \frac{\left[ {ML}^{- 1} T^{- 2} \right]}{\left[ {ML}^{- 3} \right]} \right]^\frac{1}{2} = \left[ L^2 T^{- 2} \right]^{1/2} = \left[ {LT}^{- 1} \right]\]

Since the dimensions of both sides of the equation are the same, the equation is dimensionally correct.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Introduction to Physics - Exercise [Page 10]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 1 Introduction to Physics
Exercise | Q 18.2 | Page 10

RELATED QUESTIONS

“Politics is the art of the possible”. Similarly, “Science is the art of the soluble”. Explain this beautiful aphorism on the nature and practice of science.


What are the dimensions of the ratio of the volume of a cube of edge a to the volume of a sphere of radius a?


If two quantities have same dimensions, do they represent same physical content?


It is desirable that the standards of units be easily available, invariable, indestructible and easily reproducible. If we use foot of a person as a standard unit of length, which of the above features are present and which are not?


Suppose a quantity x can be dimensionally represented in terms of M, L and T, that is, `[ x ] = M^a L^b T^c`.  The quantity mass


A dimensionless quantity


A unitless quantity


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


The dimensions ML−1 T−2 may correspond to


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Test if the following equation is dimensionally correct:
\[V = \frac{\pi P r^4 t}{8 \eta l}\]

where v = frequency, P = pressure, η = coefficient of viscosity.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Can a vector have zero component along a line and still have nonzero magnitude?


Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


The radius of a circle is stated as 2.12 cm. Its area should be written as


The magnitude of the vector product of two vectors \[\left| \vec{A} \right|\] and \[\left| \vec{B} \right|\] may be

(a) greater than AB
(b) equal to AB
(c) less than AB
(d) equal to zero.


A carrom board (4 ft × 4 ft square) has the queen at the centre. The queen, hit by the striker moves to the from edge, rebounds and goes in the hole behind the striking line. Find the magnitude of displacement of the queen (a) from the centre to the front edge, (b) from the front edge to the hole and (c) from the centre to the hole.


If  \[\vec{A} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{B} = 4 \vec{i} + 3 \vec{j} + 2 \vec{k}\] find \[\vec{A} \times \vec{B}\].


Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×