हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Let the Angle Between Two Nonzero Vectors → a and → B Be 120° and Its Resultant Be → C . - Physics

Advertisements
Advertisements

प्रश्न

Let the angle between two nonzero vectors \[\vec{A}\] and \[\vec{B}\] be 120° and its resultant be \[\vec{C}\].

विकल्प

  • C must be equal to \[\left| A - B \right|\]

  •  C must be less than \[\left| A - B \right|\]

  • C must be greater than \[\left| A - B \right|\]

  • C may be equal to \[\left| A - B \right|\]

MCQ

उत्तर

 C must be less than \[\left| A - B \right|\]

Here, we have three vector A, B and C.

\[\left| \vec{A} + \vec{B} \right|^2 = \left| \vec{A} \right|^2 + \left| \vec{B} \right|^2 + 2 \vec{A} . \vec{B} . . . (i)\]

\[ \left| \vec{A} - \vec{B} \right|^2 = \left| \vec{A} \right|^2 + \left| \vec{B} \right|^2 - 2 \vec{A} . \vec{B} . . . (ii)\]

Subtracting (i) from (ii), we get:

\[\left| \vec{A} + \vec{B} \right|^2 - \left| \vec{A} - \vec{B} \right|^2 = 4 \vec{A} . \vec{B}\]

Using the resultant property \[\vec{C} = \vec{A} + \vec{B}\],we get:

\[\left| \vec{C} \right|^2 - \left| \vec{A} - \vec{B} \right|^2 = 4 \vec{A} . \vec{B} \]

\[ \Rightarrow \left| \vec{C} \right|^2 = \left| \vec{A} - \vec{B} \right|^2 + 4 \vec{A} . \vec{B} \]

\[ \Rightarrow \left| \vec{C} \right|^2 = \left| \vec{A} - \vec{B} \right|^2 + 4\left| \vec{A} \right|\left| \vec{B} \right|\cos120^\circ\]

Since cosine is negative in the second quadrant, C must be less than \[\left| A - B \right|\] .

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Physics and Mathematics - MCQ [पृष्ठ २८]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 2 Physics and Mathematics
MCQ | Q 3 | पृष्ठ २८

संबंधित प्रश्न

“Politics is the art of the possible”. Similarly, “Science is the art of the soluble”. Explain this beautiful aphorism on the nature and practice of science.


If two quantities have same dimensions, do they represent same physical content?


Suppose a quantity x can be dimensionally represented in terms of M, L and T, that is, `[ x ] = M^a L^b T^c`.  The quantity mass


A unitless quantity


The dimensions ML−1 T−2 may correspond to


Find the dimensions of linear momentum . 


Find the dimensions of magnetic permeability \[\mu_0\] 
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]

where F is force, q is charge, v is speed, I is current, and a is distance.


Theory of relativity reveals that mass can be converted into energy. The energy E so obtained is proportional to certain powers of mass m and the speed c of light. Guess a relation among the quantities using the method of dimensions.


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?


Is it possible to add two vectors of unequal magnitudes and get zero? Is it possible to add three vectors of equal magnitudes and get zero?


Can you add three unit vectors to get a unit vector? Does your answer change if two unit vectors are along the coordinate axes?


Can you add two vectors representing physical quantities having different dimensions? Can you multiply two vectors representing physical quantities having different dimensions?


Let \[\vec{A} = 3 \vec{i} + 4 \vec{j}\]. Write a vector \[\vec{B}\] such that \[\vec{A} \neq \vec{B}\], but A = B.


A vector \[\vec{A}\] points vertically upward and \[\vec{B}\] points towards the north. The vector product \[\vec{A} \times \vec{B}\] is


Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.


If  \[\vec{A} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{B} = 4 \vec{i} + 3 \vec{j} + 2 \vec{k}\] find \[\vec{A} \times \vec{B}\].


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


Write the number of significant digits in (a) 1001, (b) 100.1, (c) 100.10, (d) 0.001001.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×