Advertisements
Advertisements
Question
Let the angle between two nonzero vectors \[\vec{A}\] and \[\vec{B}\] be 120° and its resultant be \[\vec{C}\].
Options
C must be equal to \[\left| A - B \right|\]
C must be less than \[\left| A - B \right|\]
C must be greater than \[\left| A - B \right|\]
C may be equal to \[\left| A - B \right|\]
Solution
C must be less than \[\left| A - B \right|\]
Here, we have three vector A, B and C.
\[\left| \vec{A} + \vec{B} \right|^2 = \left| \vec{A} \right|^2 + \left| \vec{B} \right|^2 + 2 \vec{A} . \vec{B} . . . (i)\]
\[ \left| \vec{A} - \vec{B} \right|^2 = \left| \vec{A} \right|^2 + \left| \vec{B} \right|^2 - 2 \vec{A} . \vec{B} . . . (ii)\]
Subtracting (i) from (ii), we get:
\[\left| \vec{A} + \vec{B} \right|^2 - \left| \vec{A} - \vec{B} \right|^2 = 4 \vec{A} . \vec{B}\]
Using the resultant property \[\vec{C} = \vec{A} + \vec{B}\],we get:
\[\left| \vec{C} \right|^2 - \left| \vec{A} - \vec{B} \right|^2 = 4 \vec{A} . \vec{B} \]
\[ \Rightarrow \left| \vec{C} \right|^2 = \left| \vec{A} - \vec{B} \right|^2 + 4 \vec{A} . \vec{B} \]
\[ \Rightarrow \left| \vec{C} \right|^2 = \left| \vec{A} - \vec{B} \right|^2 + 4\left| \vec{A} \right|\left| \vec{B} \right|\cos120^\circ\]
Since cosine is negative in the second quadrant, C must be less than \[\left| A - B \right|\] .
APPEARS IN
RELATED QUESTIONS
“Politics is the art of the possible”. Similarly, “Science is the art of the soluble”. Explain this beautiful aphorism on the nature and practice of science.
“It is more important to have beauty in the equations of physics than to have them agree with experiments”. The great British physicist P. A. M. Dirac held this view. Criticize this statement. Look out for some equations and results in this book which strike you as beautiful.
A unitless quantity
Find the dimensions of magnetic field B.
The relevant equation are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.
Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.
A vector is not changed if
The component of a vector is
Let \[\vec{C} = \vec{A} + \vec{B}\]
Let \[\vec{A} \text { and } \vec{B}\] be the two vectors of magnitude 10 unit each. If they are inclined to the X-axis at angle 30° and 60° respectively, find the resultant.
Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a) \[\vec{a}\] , (b) \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].
Suppose \[\vec{a}\] is a vector of magnitude 4.5 units due north. What is the vector (a) \[3 \vec{a}\], (b) \[- 4 \vec{a}\] ?
Let \[\vec{a} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j} + 5 \vec{k}\] Find the angle between them.
Prove that \[\vec{A} . \left( \vec{A} \times \vec{B} \right) = 0\].
Give an example for which \[\vec{A} \cdot \vec{B} = \vec{C} \cdot \vec{B} \text{ but } \vec{A} \neq \vec{C}\].
Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\]
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]
If π = 3.14, then the value of π2 is ______