English
Karnataka Board PUCPUC Science Class 11

Let → a = 4 → I + 3 → J and → B = 3 → I + 4 → J . (A) Find the Magnitudes of (A) → a , (B) → B ,(C) → a + → B and (D) → a − → B . - Physics

Advertisements
Advertisements

Question

Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].

Answer in Brief

Solution

Given: \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]

(a) Magnitude of  \[\vec{a}\] is given by \[\left| \vec{a} \right| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5\] 

Magnitude of  \[\vec{b}\] is  given by \[\left| \vec{b} \right| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5\]

(c) \[\vec{a} + \vec{b} = (4 \hat {i} + 3 \hat {j} ) + (3 \hat { i} + 4 \hat { j} ) = (7 \hat { i} + 7 \hat {j} )\]

∴ Magnitude of vector \[\vec{a} + \vec{b}\] is given by \[\left| \vec{a} + \vec{b} \right| = \sqrt{49 + 49} = \sqrt{98} = 7\sqrt{2}\]

(d) \[\vec{a} - \vec{b} = \left( 4 \vec{i} + 3 \vec{j} \right) - \left( 3 \vec{i} + 4 \vec{j} \right) = \vec{i} - \vec{j}\]

∴ Magnitude of vector \[\vec{a} - \vec{b}\]  is given by \[\left| \vec{a} - \vec{b} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2} = \sqrt{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Physics and Mathematics - Exercise [Page 29]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 2 Physics and Mathematics
Exercise | Q 4 | Page 29

RELATED QUESTIONS

“It is more important to have beauty in the equations of physics than to have them agree with experiments”. The great British physicist P. A. M. Dirac held this view. Criticize this statement. Look out for some equations and results in this book which strike you as beautiful.


If all the terms in an equation have same units, is it necessary that they have same dimensions? If all the terms in an equation have same dimensions, is it necessary that they have same units?


It is desirable that the standards of units be easily available, invariable, indestructible and easily reproducible. If we use foot of a person as a standard unit of length, which of the above features are present and which are not?


A dimensionless quantity


\[\int\frac{dx}{\sqrt{2ax - x^2}} = a^n \sin^{- 1} \left[ \frac{x}{a} - 1 \right]\] 
The value of n is


Find the dimensions of
(a) angular speed ω,
(b) angular acceleration α,
(c) torque τ and
(d) moment of interia I.
Some of the equations involving these quantities are \[\omega = \frac{\theta_2 - \theta_1}{t_2 - t_1}, \alpha = \frac{\omega_2 - \omega_1}{t_2 - t_1}, \tau = F . r \text{ and }I = m r^2\].
The symbols have standard meanings.


Find the dimensions of electric field E. 

The relevant equations are \[F = qE, F = qvB, \text{ and }B = \frac{\mu_0 I}{2 \pi a};\]
where F is force, q is charge, v is speed, I is current, and a is distance.


Test if the following equation is dimensionally correct:
\[h = \frac{2S cos\theta}{\text{ prg }},\]
where h = height, S = surface tension, ρ = density, I = moment of interia.


Is a vector necessarily changed if it is rotated through an angle?


Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


Can you have  \[\vec{A} \times \vec{B} = \vec{A} \cdot \vec{B}\] with A ≠ 0 and B ≠ 0 ? What if one of the two vectors is zero?


A vector is not changed if


A situation may be described by using different sets coordinate axes having different orientation. Which the following do not depended on the orientation of the axis?
(a) the value of a scalar
(b) component of a vector
(c) a vector
(d) the magnitude of a vector.


A vector \[\vec{A}\] makes an angle of 20° and \[\vec{B}\] makes an angle of 110° with the X-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.


Add vectors \[\vec{A} , \vec{B} \text { and } \vec{C}\]  each having magnitude of 100 unit and inclined to the X-axis at angles 45°, 135° and 315° respectively.


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


Let A1 A2 A3 A4 A5 A6 A1 be a regular hexagon. Write the x-components of the vectors represented by the six sides taken in order. Use the fact the resultant of these six vectors is zero, to prove that
cos 0 + cos π/3 + cos 2π/3 + cos 3π/3 + cos 4π/3 + cos 5π/3 = 0.
Use the known cosine values to verify the result.


If  \[\vec{A} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{B} = 4 \vec{i} + 3 \vec{j} + 2 \vec{k}\] find \[\vec{A} \times \vec{B}\].


The changes in a function y and the independent variable x are related as 
\[\frac{dy}{dx} = x^2\] . Find y as a function of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×