English
Karnataka Board PUCPUC Science Class 11

If All the Terms in an Equation Have Same Units, is It Necessary that They Have Same Dimensions? If All the Terms in an Equation Have Same Dimensions, is It Necessary that They Have Same Units? - Physics

Advertisements
Advertisements

Question

If all the terms in an equation have same units, is it necessary that they have same dimensions? If all the terms in an equation have same dimensions, is it necessary that they have same units?

Short Note

Solution

Yes, if all the terms in an equation have the same units, it is necessary that they have the same dimension.

No, if all the terms in an equation have the same dimensions, it is not necessary that they have the same unit. This is because two quantities with different units can have the same dimension, but two quantities with different dimensions cannot have the same unit. For example, angular frequency and frequency have the dimensions `[ T ^- 1 ]`, but the units of angular frequency are rad/s and frequency is Hertz. Another example is energy per unit volume and pressure. Both have the dimensions of  `[ ML ^(-1) T ^(-2)]` but units of pressure is N/m2 and that of energy per unit volume is J/m3

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Introduction to Physics - Short Answers [Page 9]

APPEARS IN

HC Verma Concepts of Physics Vol. 1 [English] Class 11 and 12
Chapter 1 Introduction to Physics
Short Answers | Q 4 | Page 9

RELATED QUESTIONS

“Every great physical theory starts as a heresy and ends as a dogma”. Give some examples from the history of science of the validity of this incisive remark


What are the dimensions of the ratio of the volume of a cube of edge a to the volume of a sphere of radius a?


Find the dimensions of pressure.


Let I = current through a conductor, R = its resistance and V = potential difference across its ends. According to Ohm's law, product of two of these quantities equals the third. Obtain Ohm's law from dimensional analysis. Dimensional formulae for R and V are \[{\text{ML}}^2 \text{I}^{- 2} \text{T}^{- 3}\] and \[{\text{ML}}^2 \text{T}^{- 3} \text{I}^{- 1}\] respectively.


Test if the following equation is dimensionally correct:
\[v = \frac{1}{2 \pi}\sqrt{\frac{mgl}{I}};\] 
where h = height, S = surface tension, \[\rho\] = density, P = pressure, V = volume, \[\eta =\] coefficient of viscosity, v = frequency and I = moment of interia.


Is a vector necessarily changed if it is rotated through an angle?


Can a vector have zero component along a line and still have nonzero magnitude?


Is the vector sum of the unit vectors  \[\vec{i}\] and \[\vec{i}\] a unit vector? If no, can you multiply this sum by a scalar number to get a unit vector?

 


Let \[\vec{A} = 3 \vec{i} + 4 \vec{j}\]. Write a vector \[\vec{B}\] such that \[\vec{A} \neq \vec{B}\], but A = B.


If \[\vec{A} \times \vec{B} = 0\] can you say that

(a) \[\vec{A} = \vec{B} ,\]

(b) \[\vec{A} \neq \vec{B}\] ?


Let \[\vec{A} = 5 \vec{i} - 4 \vec{j} \text { and } \vec{B} = - 7 \cdot 5 \vec{i} + 6 \vec{j}\]. Do we have \[\vec{B} = k \vec{A}\] ? Can we say \[\frac{\vec{B}}{\vec{A}}\] = k ?


The resultant of  \[\vec{A} \text { and } \vec{B}\] makes an angle α with  \[\vec{A}\] and β with \[\vec{B}\],


The x-component of the resultant of several vectors
(a) is equal to the sum of the x-components of the vectors of the vectors
(b) may be smaller than the sum of the magnitudes of the vectors
(c) may be greater than the sum of the magnitudes of the vectors
(d) may be equal to the sum of the magnitudes of the vectors.


A vector \[\vec{A}\] makes an angle of 20° and \[\vec{B}\] makes an angle of 110° with the X-axis. The magnitudes of these vectors are 3 m and 4 m respectively. Find the resultant.


Two vectors have magnitudes 2 unit and 4 unit respectively. What should be the angle between them if the magnitude of the resultant is (a) 1 unit, (b) 5 unit and (c) 7 unit.


Suppose \[\vec{a}\] is a vector of magnitude 4.5 units due north. What is the vector (a) \[3 \vec{a}\], (b) \[- 4 \vec{a}\] ?


If  \[\vec{A} = 2 \vec{i} + 3 \vec{j} + 4 \vec{k} \text { and } \vec{B} = 4 \vec{i} + 3 \vec{j} + 2 \vec{k}\] find \[\vec{A} \times \vec{B}\].


Draw a graph from the following data. Draw tangents at x = 2, 4, 6 and 8. Find the slopes of these tangents. Verify that the curve draw is y = 2x2 and the slope of tangent is \[\tan \theta = \frac{dy}{dx} = 4x\] 
\[\begin{array}x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ y & 2 & 8 & 18 & 32 & 50 & 72 & 98 & 128 & 162 & 200\end{array}\]


A curve is represented by y = sin x. If x is changed from \[\frac{\pi}{3}\text{ to }\frac{\pi}{3} + \frac{\pi}{100}\] , find approximately the change in y. 


High speed moving particles are studied under


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×