Advertisements
Advertisements
प्रश्न
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
30, 40, 50
उत्तर
Take a = 30, b = 40 and c = 50
Now a2 + b2 = 302 + 402
= 900 + 1600
= 2500
C2 = 502 = 2500
∴ a2 + b2 = c2
Yes, By the converse of Pythagoras theorem, the triangle with given measures is a right angled triangle.
APPEARS IN
संबंधित प्रश्न
Sides of the triangle are 7 cm, 24 cm, and 25 cm. Determine whether the triangle is a right-angled triangle or not.
The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle
5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
If in ∆ABC, DE || BC. AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is
In a ∆ABC, AD is the bisector of ∠BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. The length of the side AC is
Check whether given sides are the sides of right-angled triangles, using Pythagoras theorem
12, 13, 15
Choose the correct alternative:
In right angled triangle, if sum of the squares of the sides of right angle is 169, then what is the length of the hypotenuse?
Choose the correct alternative:
If the length of diagonal of square is √2, then what is the length of each side?
Choose the correct alternative:
If length of both diagonals of rhombus are 60 and 80, then what is the length of side?
In ∆LMN, l = 5, m = 13, n = 12 then complete the activity to show that whether the given triangle is right angled triangle or not.
*(l, m, n are opposite sides of ∠L, ∠M, ∠N respectively)
Activity: In ∆LMN, l = 5, m = 13, n = `square`
∴ l2 = `square`, m2 = 169, n2 = 144.
∴ l2 + n2 = 25 + 144 = `square`
∴ `square` + l2 = m2
∴By Converse of Pythagoras theorem, ∆LMN is right angled triangle.