Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
A line perpendicular to the line 5x − y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq.units, then its equation is
विकल्प
`x + 5y +- 5sqrt(2)` = 0
`x - 5y +- 5sqrt(2)` = 0
`5x + y +- 5sqrt(2)` = 0
`5x - y +- 5sqrt(2)` = 0
उत्तर
`x + 5y +- 5sqrt(2)` = 0
APPEARS IN
संबंधित प्रश्न
Write the equation of the lines through the point (1, −1) parallel to x + 3y − 4 = 0
If (−4, 7) is one vertex of a rhombus and if the equation of one diagonal is 5x − y + 7 = 0, then find the equation of another diagonal
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and through the point (−1, 2)
Find the equation of the lines passing through the point of intersection lines 4x − y + 3 = 0 and 5x + 2y + 7 = 0, and parallel to x − y + 5 = 0
Find the equations of straight lines which are perpendicular to the line 3x + 4y − 6 = 0 and are at a distance of 4 units from (2, 1)
If p1 and p2 are the lengths of the perpendiculars from the origin to the straight lines x sec θ + y cosec θ = 2a and x cos θ – y sin θ = a cos 2θ, then prove that p12 + p22 = a2
Find the family of straight lines perpendicular
A line is drawn perpendicular to 5x = y + 7. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq.units
Find the image of the point (−2, 3) about the line x + 2y − 9 = 0
A photocopy store charges ₹ 1.50 per copy for the first 10 copies and ₹ 1.00 per copy after the 10th copy. Let x be the number of copies, and let y be the total cost of photocopying. Find the cost of making 40 copies
Find atleast two equations of the straight lines in the family of the lines y = 5x + b, for which b and the x-coordinate of the point of intersection of the lines with 3x − 4y = 6 are integers
Choose the correct alternative:
The slope of the line which makes an angle 45° with the line 3x − y = −5 are
Choose the correct alternative:
The intercepts of the perpendicular bisector of the line segment joining (1, 2) and (3, 4) with coordinate axes are
Choose the correct alternative:
The point on the line 2x − 3y = 5 is equidistance from (1, 2) and (3, 4) is
Choose the correct alternative:
If the two straight lines x + (2k − 7)y + 3 = 0 and 3kx + 9y − 5 = 0 are perpendicular then the value of k is