Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
विकल्प
₹ 34,720
₹ 39,320
₹ 35,720
₹ 40,000
उत्तर
P' = `("C"(1 + "i"))/"i"[1 - (1 + "i")^-"n"]`
P' = `(8000(1 + 0.06))/(0.06)[1 - (1 + 0.06)^-5]`
= `(8000(1.06))/(0.06)[1 - (1.06)^-5]`
= (1,41,333.33)(0.25274)
∴ P' = ₹35,720.
APPEARS IN
संबंधित प्रश्न
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
Choose the correct alternative :
Rental payment for an apartment is an example of
Choose the correct alternative :
A retirement annuity is particularly attractive to someone who has
Fill in the blank :
The intervening time between payment of two successive installments is called as ___________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
Payment of every annuity is called an installment.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
Annuity contingent begins and ends on certain fixed dates
State whether the following statement is True or False:
An annuity where payments continue forever is called perpetuity
In ordinary annuity, payments or receipts occur at ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`