हिंदी

Choose the correct alternative : You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?

विकल्प

  • ₹ 34,720

  • ₹ 39,320

  • ₹ 35,720

  • ₹ 40,000

MCQ

उत्तर

P' = `("C"(1 + "i"))/"i"[1 - (1 + "i")^-"n"]`

P' = `(8000(1 + 0.06))/(0.06)[1 - (1 + 0.06)^-5]`

= `(8000(1.06))/(0.06)[1 - (1.06)^-5]`

= (1,41,333.33)(0.25274)

∴ P' = ₹35,720.

shaalaa.com
Annuity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Insurance and Annuity - Miscellaneous Exercise 2 [पृष्ठ २९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 1.05 | पृष्ठ २९

संबंधित प्रश्न

Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


Choose the correct alternative :

Rental payment for an apartment is an example of


Choose the correct alternative :

A retirement annuity is particularly attractive to someone who has


Fill in the blank :

The intervening time between payment of two successive installments is called as ___________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

Payment of every annuity is called an installment.


Solve the following :

A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.


Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.


Solve the following :

A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]


Solve the following :

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]


Solve the following :

After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


State whether the following statement is True or False:

Annuity contingent begins and ends on certain fixed dates


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


In ordinary annuity, payments or receipts occur at ______


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×