Advertisements
Advertisements
प्रश्न
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
उत्तर
Given, Property value of the shop = ₹5,00,000 Property value of the godown = ₹10,00,000
Since shopkeeper insures shop for 80% and godown for 80%,
∴ Policy value of shop = 80% of its property value
= `(80)/(100) xx 5,00,000`
= ₹4,00,000
Policy vale of godown
= 80% of its property value
= `(80)/(100) xx 10,00,000` = ₹8,00,000
Rate of premium is 8% for the shop as well as for godown.
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 4,00,000` = ₹32,000
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 8,00,000` = ₹64,000
∴ Total premium = amount of premium for the shop + amount of premium for the godown
= 32,000 + 64,000
= ₹96,000
∴ Total premium payable by the shopkeeper is ` 96,000.
APPEARS IN
संबंधित प्रश्न
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
Find the rate of interest compounded annually if an annuity immediate at ₹20,000 per year amounts to ₹2,60,000 in 3 years.
Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
In an ordinary annuity, payments or receipts occur at ______.
Fill in the blank :
The payment of each single annuity is called __________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40