Advertisements
Advertisements
प्रश्न
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
उत्तर
Given, C = ₹500
Amount is invested at the end of every quarter.
∴ It is an immediate annuity.
Rate of interest is 12% p.a.
∴ r = `(12)/(4)`% = 3% per quarter
∴ i = `"r"/(100) = (3)/(100)` 0..03
The period is of 5 years and payment is made on quarterly basis.
∴ n = 5 x 4 = 20
Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`
= `(500)/(0.03)[(1 + 0.03)^20 - 1]`
= `(500)/(0.03)[(1.03)^20 - 1]`
= `(500)/(0.03)(1.8061 - 1)`
= `(500)/(0.03) xx (0.8061)`
= `(403.05)/(0.03)`
= `(40305)/(3)`
= ₹13,435
∴ Amount of ordinary annuity is ₹13,435.
APPEARS IN
संबंधित प्रश्न
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
A lady plans to save for her daughter’s marriage. She wishes to accumulate a sum of ₹4,64,100 at the end of 4 years. What amount should she invest every year if she gets an interest of 10% p.a. compounded annually? [Given (1.1)4 = 1.4641]
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
Choose the correct alternative :
Rental payment for an apartment is an example of
Choose the correct alternative :
A retirement annuity is particularly attractive to someone who has
Fill in the blank :
The person who receives annuity is called __________.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
Solve the following :
Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
A person purchases a television by paying ₹20,000 in cash and promising to pay ₹1,000 at end of every month for the next 2 years. If money is worth 12% p. a. converted monthly, find the cash price of the television. [(1.01)–24 = 0.7875]
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
In ordinary annuity, payments or receipts occur at ______
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
An annuity in which each payment is made at the end of period is called ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`