Advertisements
Advertisements
प्रश्न
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
उत्तर
Given, C = ₹3,000, A = ₹60,000, r = 10% p.a.
∴ i = `"r"/(100) = (10)/(100)` = 0.1
Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ 60,000 = `(3,000)/(0.1)[(1 + 0.1)^"n" - 1]`
∴ `(60,000 xx 0.1)/(3,000)` = (1.1)n – 1
∴ 2 = (1.1)n – 1
∴ (1.1)n = 2 + 1
∴ (1.1)n = 3
It is given that (1.1)11 = 2.8531 and (1.1)12 = 3.1384
∴ n will be between 11 years and 12 years.
Thus, the least number of years for which an annuity of ₹3,000 per annum must run is 12 years.
APPEARS IN
संबंधित प्रश्न
Find accumulated value after 1 year of an annuity immediate in which ₹ 10,000 is invested every quarter at 16% p.a. compounded quarterly. [Given (1.04)4 = 1.1699]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Choose the correct alternative :
Rental payment for an apartment is an example of
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Multiple choice questions:
Rental payment for an apartment is an example of ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
State whether the following statement is True or False:
Annuity contingent begins and ends on certain fixed dates
The intervening time between payment of two successive installments is called as ______
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]