Advertisements
Advertisements
Question
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solution
Given, C = ₹3,000, A = ₹60,000, r = 10% p.a.
∴ i = `"r"/(100) = (10)/(100)` = 0.1
Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ 60,000 = `(3,000)/(0.1)[(1 + 0.1)^"n" - 1]`
∴ `(60,000 xx 0.1)/(3,000)` = (1.1)n – 1
∴ 2 = (1.1)n – 1
∴ (1.1)n = 2 + 1
∴ (1.1)n = 3
It is given that (1.1)11 = 2.8531 and (1.1)12 = 3.1384
∴ n will be between 11 years and 12 years.
Thus, the least number of years for which an annuity of ₹3,000 per annum must run is 12 years.
APPEARS IN
RELATED QUESTIONS
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]
Find the present value of an annuity immediate of ₹36,000 p.a. for 3 years at 9% p.a. compounded annually. [Given (1.09)−3 = 0.7722]
Find the present value of an ordinary annuity of ₹63,000 p.a. for 4 years at 14% p.a. compounded annually. [Given (1.14)−4 = 0.5921]
______ is a series of constant cash flows over a limited period of time.
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
An annuity in which each payment is made at the end of period is called ______
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40