Advertisements
Advertisements
Question
Solve the following :
Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.
Solution
Given, A = ₹41,000, C = ₹20,000, n = 2 years
We need to find r such that an ordinary annuity of ₹20,000 amounts to ₹41,000 in 2 years.
Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`
41,000 = `"C"/"i"[(1 + "i")^2 - 1]`
41,000 = `(20,000)/"i"[(1 + "i")^2 - 1]`
`(41,000)/(20,000)= (1 + 2"i" + "i"^2 - 1)/"i"`
`(41)/(20) = ("i"^2 + 2"i")/"i"`
`(41)/(20)` = i + 2
`(41)/(20)` – 2 = i
`(41 - 40)/(20)` = i
∴ i = `(1)/(20)` = 0.05
But i = `"r"/(100)`
∴ 0.05 = `"r"/(100)`
∴ r = 5%
The rate of interest is 5%.
APPEARS IN
RELATED QUESTIONS
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Choose the correct alternative :
Rental payment for an apartment is an example of
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
State whether the following statement is True or False:
An annuity where payments continue forever is called perpetuity
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`