English

Solve the following : Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

Find the rate of interest compounded annually if an ordinary annuity of ₹20,000 per year amounts to ₹41,000 in 2 years.

Sum

Solution

Given, A = ₹41,000, C = ₹20,000, n = 2 years
We need to find r such that an ordinary annuity of ₹20,000 amounts to ₹41,000 in 2 years.

Since, A = `"C"/"i"[(1 + "i")^"n" - 1]`

41,000 = `"C"/"i"[(1 + "i")^2 - 1]`

41,000 = `(20,000)/"i"[(1 + "i")^2 - 1]`

`(41,000)/(20,000)= (1 + 2"i" + "i"^2 - 1)/"i"`

`(41)/(20) = ("i"^2 + 2"i")/"i"`

`(41)/(20)` = i + 2

`(41)/(20)` – 2 = i

`(41 - 40)/(20)` = i

∴ i = `(1)/(20)` = 0.05

But i = `"r"/(100)`

∴ 0.05 = `"r"/(100)`

∴ r = 5%
The rate of interest is 5%.

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2: Insurance and Annuity - Miscellaneous Exercise 2 [Page 31]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 4.17 | Page 31

RELATED QUESTIONS

Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]


Find the number of years for which an annuity of ₹500 is paid at the end of every year, if the accumulated amount works out to be ₹1,655 when interest is compounded annually at 10% p.a.


For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]


Choose the correct alternative :

You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?


Choose the correct alternative :

Rental payment for an apartment is an example of


Fill in the blank :

The person who receives annuity is called __________.


Fill in the blank :

If payments of an annuity fall due at the end of every period, the series is called annuity __________.


State whether the following is True or False :

The present value of an annuity is the sum of the present value of all installments.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Solve the following :

Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]


Solve the following :

Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]


Solve the following :

A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]


Solve the following :

A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]


Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]


State whether the following statement is True or False:

An annuity where payments continue forever is called perpetuity


If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______


A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×