English

Solve the following : Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625] - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following :

Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]

Sum

Solution

Given, C = ₹12,000
Since, the amount is invested at the end of every half year, it is immediate annuity. The period is of two years.
∴ n = 2 x 2 = 4 half years
Rate of interest is 12% p.a.

∴ r = `(12)/(2)` = 6% per half year

i = `"r"/(100) = (6)/(100)` = 0.06

Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`

∴ A = `(12,000)/(0.06)[(1 + 0.06)^4 - 1]`

= 2,00,000 [(1.06)4 – 1]
= 2,00,000 (1.2625 – 1]
= 2,00,000 (0.2625)
∴ A = 52,500
∴ Future value after 2 years is ₹52,500.

shaalaa.com
Annuity
  Is there an error in this question or solution?
Chapter 2: Insurance and Annuity - Miscellaneous Exercise 2 [Page 32]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 2 Insurance and Annuity
Miscellaneous Exercise 2 | Q 4.22 | Page 32

RELATED QUESTIONS

A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]


Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]


A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]


A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.


Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]


Fill in the blank :

The payment of each single annuity is called __________.


Fill in the blank :

An annuity where payments continue forever is called __________.


State whether the following is True or False :

Sinking fund is set aside at the beginning of a business.


Solve the following :

Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]


Multiple choice questions:

Rental payment for an apartment is an example of ______


Multiple choice questions:  

In annuity calculations, the interest is usually taken as ______


State whether the following statement is True or False:

A sinking fund is a fund established by financial organization


State whether the following statement is True or False:

The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n 


The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______


If payments of an annuity fall due at the beginning of every period, the series is called annuity ______


The intervening time between payment of two successive installments is called as ______


Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]


The future amount, A = ₹ 10,00,000

Period, n = 20, r = 5%, (1.025)20 = 1.675

A = `"C"/"I" [(1 + "i")^"n" - 1]`

I = `5/200` = `square` as interest is calculated semi-annually

A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`

10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`

= `"C"/0.025 [1.675 - 1]`

10,00,000 = `("C" xx 0.675)/0.025`

C = ₹ `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×