Advertisements
Advertisements
Question
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Solution
Given, C = ₹12,000
Since, the amount is invested at the end of every half year, it is immediate annuity. The period is of two years.
∴ n = 2 x 2 = 4 half years
Rate of interest is 12% p.a.
∴ r = `(12)/(2)` = 6% per half year
i = `"r"/(100) = (6)/(100)` = 0.06
Now, A = `"C"/"i"[(1 + "i")^"n" - 1]`
∴ A = `(12,000)/(0.06)[(1 + 0.06)^4 - 1]`
= 2,00,000 [(1.06)4 – 1]
= 2,00,000 (1.2625 – 1]
= 2,00,000 (0.2625)
∴ A = 52,500
∴ Future value after 2 years is ₹52,500.
APPEARS IN
RELATED QUESTIONS
A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Fill in the blank :
The payment of each single annuity is called __________.
Fill in the blank :
An annuity where payments continue forever is called __________.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
State whether the following statement is True or False:
A sinking fund is a fund established by financial organization
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
The present value of an immediate annuity for 4 years at 10% p.a. compounded annually is ₹ 23,400. It’s accumulated value after 4 years would be ₹ ______
If payments of an annuity fall due at the beginning of every period, the series is called annuity ______
The intervening time between payment of two successive installments is called as ______
Find the amount of an ordinary annuity if a payment of ₹ 500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [Given (1.03)20 = 1.8061]
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`