Advertisements
Advertisements
Question
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Solution
Given, C = ₹3,000, A' = 19324.80, r = 20% p.a.
∴ i = `"r"/(100) = (20)/(100)` = 0.2
Since, A' = `("C"(1 + "i"))/"i" [(1 + "i")^"n" - 1]`
∴ 19,324.80 = `(3,000(1 + 0.2))/(0.2) [(1 + 0.2)^"n" - 1]`
∴ 19,324.80 = `(3,000 xx 1.2)/(0.2) [(1.2)^"n" - 1]`
∴ 19,324.80 = 3,000 x 6 [(1.2)n – 1]
∴ `(19,324.80)/(18,000)` = (1.2)n – 1
∴ `(19,32,480)/(18,000 xx 100)` = (1.2)n – 1
∴ `(1,07,360)/(1,00,000)` = (1.2)n – 1
∴ 1.0736 = (1.2)n – 1
∴ (1.2)n = 1.0736 + 1
∴ (1.2)n = 2.0736
∴ (1.2)n = (1.2)4 ...[ `Theta` (1.2)4 = 2.0736]
∴ n = 4 years
∴ After 4 years, an annuity due of ₹3,000 p.a. would accumulate to ₹19,324.80 at 20% p.a. compounded annually.
APPEARS IN
RELATED QUESTIONS
Find the accumulated (future) value of annuity of ₹ 800 for 3 years at interest rate 8% compounded annually. [Given (1.08)3 = 1.2597]
A person invested ₹ 5,000 every year in finance company that offered him interest compounded at 10% p.a., what is the amount accumulated after 4 years? [Given (1.1)4 = 1.4641]
An annuity immediate is to be paid for some years at 12% p.a. The present value of the annuity is ₹ 10,000 and the accumulated value is ₹ 20,000. Find the amount of each annuity payment
For an annuity immediate paid for 3 years with interest compounded at 10% p.a., the present value is ₹24,000. What will be the accumulated value after 3 years? [Given (1.1)3 = 1.331]
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
Fill in the blank :
The person who receives annuity is called __________.
Fill in the blank :
If payments of an annuity fall due at the beginning of every period, the series is called annuity __________.
Fill in the blank :
If payments of an annuity fall due at the end of every period, the series is called annuity __________.
State whether the following is True or False :
Sinking fund is set aside at the beginning of a business.
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solve the following :
Find the amount of an ordinary annuity if a payment of ₹500 is made at the end of every quarter for 5 years at the rate of 12% per annum compounded quarterly. [(1.03)20 = 1.8061]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A company decides to set aside a certain amount at the end of every year to create a sinking fund that should amount to ₹9,28,200 in 4 years at 10% p.a. Find the amount to be set aside every year. [(1.1)4 = 1.4641]
Solve the following :
Find the future value after 2 years if an amount of ₹12,000 is invested at the end of every half year at 12% p. a. compounded half yearly. [(1.06)4 = 1.2625]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
A company decides to set aside a certain sum at the end of each year to create a sinking fund, which should amount to ₹ 4 lakhs in 4 years at 10% p.a. Find the amount to be set aside each year?
[Given (1.1)4 = 1.4641]
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`