Advertisements
Advertisements
Question
Solve the following :
A shopkeeper insures his shop and godown valued at ₹5,00,000 and ₹10,00,000 respectively for 80 % of their values. If the rate of premium is 8 %, find the total annual premium.
Solution
Given, Property value of the shop = ₹5,00,000 Property value of the godown = ₹10,00,000
Since shopkeeper insures shop for 80% and godown for 80%,
∴ Policy value of shop = 80% of its property value
= `(80)/(100) xx 5,00,000`
= ₹4,00,000
Policy vale of godown
= 80% of its property value
= `(80)/(100) xx 10,00,000` = ₹8,00,000
Rate of premium is 8% for the shop as well as for godown.
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 4,00,000` = ₹32,000
∴ Amount of premium for the shop
= 8% of its policy value
= `(8)/(100) xx 8,00,000` = ₹64,000
∴ Total premium = amount of premium for the shop + amount of premium for the godown
= 32,000 + 64,000
= ₹96,000
∴ Total premium payable by the shopkeeper is ` 96,000.
APPEARS IN
RELATED QUESTIONS
Find the accumulated value of annuity due of ₹1,000 p.a. for 3 years at 10% p.a. compounded annually. [Given (1.1)3 = 1.331]
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
Choose the correct alternative :
You get payments of ₹8,000 at the beginning of each year for five years at 6%, what is the value of this annuity?
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
State whether the following is True or False :
Annuity certain begins on a fixed date and ends when an event happens.
State whether the following is True or False :
Annuity contingent begins and ends on certain fixed dates.
State whether the following is True or False :
The present value of an annuity is the sum of the present value of all installments.
State whether the following is True or False :
The future value of an annuity is the accumulated values of all installments.
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Solve the following :
Some machinery is expected to cost 25% more over its present cost of ₹6,96,000 after 20 years. The scrap value of the machinery will realize ₹1,50,000. What amount should be set aside at the end of every year at 5% p.a. compound interest for 20 years to replace the machinery? [Given (1.05)20= 2.653]
Multiple choice questions:
Rental payment for an apartment is an example of ______
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
If for an immediate annuity r = 10% p.a., P = ₹ 12,679.46 and A = ₹ 18,564, then the amount of each annuity paid is ______
State whether the following statement is True or False:
The relation between accumulated value ‘A’ and present value ‘P’ is A = P(1+ i)n
In ordinary annuity, payments or receipts occur at ______
The intervening time between payment of two successive installments is called as ______
A 35-year old person takes a policy for ₹ 1,00,000 for a period of 20 years. The rate of premium is ₹ 76 and the average rate of bonus is ₹ 7 per thousand p.a. If he dies after paying 10 annual premiums, what amount will his nominee receive?
The future amount, A = ₹ 10,00,000
Period, n = 20, r = 5%, (1.025)20 = 1.675
A = `"C"/"I" [(1 + "i")^"n" - 1]`
I = `5/200` = `square` as interest is calculated semi-annually
A = 10,00,000 = `"C"/"I" [(1 + "i")^"n" - 1]`
10,00,000 = `"C"/0.025 [(1 + 0.025)^square - 1]`
= `"C"/0.025 [1.675 - 1]`
10,00,000 = `("C" xx 0.675)/0.025`
C = ₹ `square`