Advertisements
Advertisements
Question
A person plans to put ₹400 at the beginning of each year for 2 years in a deposit that gives interest at 2% p.a. compounded annually. Find the amount that will be accumulated at the end of 2 years.
Solution
Given, C = ₹400, n = 2 years, r = 2% p.a.
i = `"r"/(100) = (2)/(100)` = 0.02
Now,A = `("C"(1 + "i"))/"i"[(1 + "i")^"n" - 1]`
∴ A = `(400(1 + 0.02))/(0.02)[(1 + 0.02)^2 - 1]`
= `(400(1.02))/(0.02)[(1.02)^2 - 1]`
= (400)(51)[1.0404 – 1]
= 20,400(0,0404)
A = 824.16
∴ Accumulated amount after 2 years is ₹824.16.
APPEARS IN
RELATED QUESTIONS
Find the amount accumulated after 2 years if a sum of ₹ 24,000 is invested every six months at 12% p.a. compounded half yearly. [Given (1.06)4 = 1.2625]
A person wants to create a fund of ₹6,96,150 after 4 years at the time of his retirement. He decides to invest a fixed amount at the end of every year in a bank that offers him interest of 10% p.a. compounded annually. What amount should he invest every year? [Given (1.1)4 = 1.4641]
Find the present value of an annuity due of ₹ 600 to be paid quarterly at 32% p.a. compounded quarterly. [Given (1.08)−4 = 0.7350]
Choose the correct alternative :
Amount of money today which is equal to series of payments in future is called
Choose the correct alternative :
Rental payment for an apartment is an example of
______ is a series of constant cash flows over a limited period of time.
Choose the correct alternative :
A retirement annuity is particularly attractive to someone who has
Fill in the blank :
The payment of each single annuity is called __________.
Solve the following :
Find the amount a company should set aside at the end of every year if it wants to buy a machine expected to cost ₹1,00,000 at the end of 4 years and interest rate is 5% p. a. compounded annually. [(1.05)4 = 1.21550625]
Solve the following :
Find the least number of years for which an annuity of ₹3,000 per annum must run in order that its amount exceeds ₹60,000 at 10% compounded annually. [(1.1)11 = 2.8531, (1.1)12 = 3.1384]
Solve the following :
Find the present value of an annuity immediate of ₹20,000 per annum for 3 years at 10% p.a. compounded annually. [(1.1)–3 = 0.7513]
Solve the following :
A man borrowed some money and paid back in 3 equal installments of ₹2,160 each. What amount did he borrow if the rate of interest was 20% per annum compounded annually? Also find the total interest charged. [(1.2)3 = 0.5787]
Solve the following :
After how many years would an annuity due of ₹3,000 p.a. accumulated ₹19,324.80 at 20% p. a. compounded yearly? [Given (1.2)4 = 2.0736]
Multiple choice questions:
In annuity calculations, the interest is usually taken as ______
Multiple choice questions:
The present value of an immediate annuity of ₹ 10,000 paid each quarter for four quarters at 16% p.a. compounded quarterly is ______
State whether the following statement is True or False:
The future value of an annuity is the accumulated values of all instalments
State whether the following statement is True or False:
An annuity where payments continue forever is called perpetuity
The intervening time between payment of two successive installments is called as ______
For an annuity due, C = ₹ 2000, rate = 16% p.a. compounded quarterly for 1 year
∴ Rate of interest per quarter = `square/4` = 4
⇒ r = 4%
⇒ i = `square/100 = 4/100` = 0.04
n = Number of quarters
= 4 × 1
= `square`
⇒ P' = `(C(1 + i))/i [1 - (1 + i)^-n]`
⇒ P' = `(square(1 + square))/0.04 [1 - (square + 0.04)^-square]`
= `(2000(square))/square [1 - (square)^-4]`
= 50,000`(square)`[1 – 0.8548]
= ₹ 7,550.40